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Recent advances in computer vision have made accurate, fast

and robust measurement of animal behavior a reality. In the

past years powerful tools specifically designed to aid the

measurement of behavior have come to fruition. Here we

discuss how capturing the postures of animals — pose

estimation - has been rapidly advancing with new deep learning

methods. While challenges still remain, we envision that the

fast-paced development of new deep learning tools will rapidly

change the landscape of realizable real-world neuroscience.
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Introduction
Behavior is the most important output of the underlying

neural computations in the brain. Behavior is complex,

often multi-faceted, and highly context dependent both

in how con-specifics or other observers understand it, as

well as how it is emitted. The study of animal behav-

ior — ethology — has a rich history rooted in the under-

standing that behavior gives an observer a unique look

into an animal’s umwelt [1–3]; what are the motivations,

instincts, and needs of an animal? What survival value do

they provide? In order to understand the brain, we need to

measure behavior in all its beauty and depth, and distill it

down into meaningful metrics. Observing and efficiently

describing behavior is a core tenant of modern ethology,

neuroscience, medicine, and technology.

In 1973 Tinbergen, Lorenz, and von Frisch were the first

ethologists awarded the Nobel Prize in Physiology or

Medicine for their pioneering work on the patterns of

individual and social group behavior [4]. The award

heralded a coming-of-age for behavior, and how
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rigorously documenting behavior can influence how we

study the brain [4]. Manual methods are powerful, but

also highly labor intensive and subject to the limits of our

senses. Matching (and extending) the capabilities of

biologists with technology is a highly non-trivial problem

[5,6], yet harbors tremendous potential. How does one

compress an animal’s behavior over long time periods into

meaningful metrics? How does one use behavioral quan-

tification to build a better understanding of the brain and

an animal’s umwelt [1]?

In this review we discuss the advances, and challenges, in

animal pose estimation and its impact on neuroscience.

Pose estimation refers to methods for measuring posture,

while posture denotes the geometrical configuration of

body parts. While there are many ways to record behavior

[7–9], videography is a non-invasive way to observe the

posture of animals. Estimated poses across time can then,

depending on the application, be transformed into kine-

matics, dynamics, and actions [3,5–7,10]. Due to the low-

dimensional nature of posture, these applications are

computationally tractable.

A very brief history of pose estimation

The postures and actions of animals have been documen-

ted as far back as cave paintings, illustrating the human

desire to distill the essence of an animal for conveying

information. As soon as it was possible to store data on a

computer, researchers have built systems for automated

analysis. Over time, these systems reflected all flavors of

artificial intelligence from rule-based via expert systems,

to machine learning [11,12�]. Traditionally posture was

measured by placing markers on the subject [3], or

markerlessly by using body models (i.e. cylinder-based

models with edge features [13]). Other computer vision

techniques, such as using texture or color to segment the

person from the background to create silhouettes [14,15],

or using so-called hand-crafted features with decoders

[11,12�,16��] were also popular before deep learning

flourished.

The deep learning revolution for posture

Pose estimation is a challenging problem, but it has been

tremendously advanced in the last five years due to

advances in deep learning. Deep neural networks

(DNNs) are computational algorithms that consist of

simple units, which are organized in layers and then

serially stacked to form ‘deep networks’. The connections

between the units are trained on data and therefore learn

to extract information from raw data in order to solve
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2 Neurobiology of behavior
tasks. The current deep learning revolution started with

achieving human-level accuracy for object recognition on

the ImageNet challenge, a popular benchmark with many

categories and millions of images [16��,17]. A combination

of large annotated data sets, sophisticated network archi-

tectures, and advances in hardware made this possible

and quickly impacted many problems in computer vision

(see reviews [12�,16��,18]).

2D and 3D (human) pose estimation

In 2014 ‘DeepPose’ was the first paper to apply deep

learning to human 2D pose estimation [23], and immedi-

ately new networks were proposed that improved accu-

racy by introducing a translation invariant model [24],

and convolutional networks plus geometric constraints

[25,26]. In the few years since, numerous human pose

estimation papers (approx. 4000 on Google Scholar), and

new benchmarks with standardized datasets plus evalua-

tion metrics appeared, which allow better comparisons of

‘state-of-the-art’ performance [27]. This culture has

driven rapid and remarkable increases in performance:

from 44% of body parts correctly labeled to nearly 94% —

with the top 15 networks being within a few percentage

points of each other (an example top network is shown in

Figure 1a) [19��,28,29��,30–32]. The history and many

advances in 2D human pose estimation are comprehen-

sively reviewed in [11,33].
Figure 1

3D 2D pose estimation 
(a)

(d) (e) 

(b)

2D pose estimation, 3D pose estimation & dense representations of human

OpenPose [19��]. (b) Example 3D human pose estimation from [20]. (c) Den

et al. [21�]. (d) Animals have diverse bodies and experimenter’s are often in

solutions. DNNs open a realm of possibilities: from mice to cuttlefish. (e) 3D

(f) The new SMALST model which fits full 3D models to images from Zuffi e
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3D human pose estimation is a more challenging task and

3D labeled data is more difficult to acquire. There have

been massive improvements in networks; see review [34].

Yet currently, the highest accuracy is achieved by using

multiple 2D views to reconstruct a 3D estimate

(Figure 1b; [35,20]), but other ways of ‘lifting’ 2D into

3D are being actively explored [36,37,20].

Dense-representations of bodies

Other video-based approaches for capturing the posture

and soft tissue of humans (and other animals) also exist.

Depth-cameras such as the Microsoft Kinect have been

used in humans [38,39] and rodents [40,41]. Recently

dense-pose representations, that is, 3D point clouds or

meshes (Figure 1c), have become a popular and elegant

way to capture the soft-tissue and shape of bodies, which

are highly important features for person identification,

fashion (i.e. clothing sales), and in medicine [21�,42,43].
However, state-of-the-art performance currently requires

body-scanning of many subjects to make body models.

Typically, large datasets are collected to enable the

creation of robust algorithms for inference on diverse

humans (or for animals, scanning toy models has been

fruitful [44]). Recently, outstanding improvements have

been made to capture shapes of animals from images

[22��,45�,46]. However, there are no animal-specific tool-

boxes geared towards neuroscience applications, although
Dense representationspose estimation 

(f)

(c)
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s and other animals: (a) Example 2D multi-human pose estimation from

se representations of humans with DensePose, adapted from Guler

terested in specific key points, making tailored network attractive

 pose estimation requires multiple cameras views, or 2D to 3D ‘lifting’.

t al. [22��] applied to zebras.
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Deep learning & behavior Mathis and Mathis 3
we believe that this will change in the near future, as for

many applications having the soft-tissue measured will

be highly important, that is, in obesity or pregnancy

research, etc.

Animal pose estimation
The remarkable performance when using deep learning

for human 2D & 3D pose estimation plus dense-

representations made this large body of work ripe for

exploring its utility in neuroscience (Figure 1d–f). In the

past two years, deep learning tools for laboratory experi-

ments have arrived (Figure 2a–d).

Many of the properties of DNNs were extremely appeal-

ing: remarkable and robust performance, relatively fast

inference due to GPU hardware, and efficient code due

to modern packages like TensorFlow and PyTorch

(reviewed in [47]). Furthermore, unlike for many previ-

ous algorithms, neither body models nor tedious manual

tuning of parameters is required. Given the algorithms,

the crucial ingredient for human pose estimation success

was large-scale well annotated data sets of humans with

the locations of the bodyparts.

Here, we identify five key areas that were important for

making DNN-based pose estimation tools useful for

neuroscience laboratories, and review the progress in

the last two years:

1. Can DNNs be harnessed with small training datasets?

Due to the nature of ‘small-scale’ laboratory experi-

ments, labeling >20, 000 or more frames is not a

feasible approach (the typical human benchmark data-

set sizes).

2. The end-result must be as accurate as a human manu-

ally-applied labels (i.e. the gold standard), and com-

putationally tractable (fast).

3. The resulting networks should be robust to changes in

experimental setups, and for long-term storage and re-

analysis of video data, to video compression.

4. Animals move in 3D, thus having efficient solutions for

3D pose estimation would be highly valuable, espe-

cially in the context of studying motor learning and

control.

5. Tracking multiple subjects and objects is important for

many experiments studying social behaviors as well as

for animal-object interactions.

1. Small training sets for lab-sized experiments

While the challenges discussed above for human pose

estimation also apply for other animals, one important

challenge for applying these methods to neuroscience was

annotated data sets — could DNNs be harnessed for

much smaller datasets, at sizes reasonable for typical labs?

Thus, while it was clear that given enough annotated

frames the same algorithms will be able to learn to track
www.sciencedirect.com 
the body parts of any animal, there were feasibility

concerns.

Human pose estimation networks are typically trained on

thousands of images, and nearly all the current state-of-

the-art networks provide tailored solutions that utilize the

human skeleton structure during inference [19��, 30].

Thus, applying these tools to new datasets was not

immediately straight-forward, and to create animal-

specific networks one would need to potentially curate

large datasets of the animal(s) they wanted to track.

Additionally, researchers would need tailored DNNs to

track their subjects (plus the ability to track unique

objects, such as the corners of a box, or an implanted

fiber).

Thus, one of the most important challenges is creating

tailored DNNs that are robust and generalize well with

little training data. One potential solution for making net-

works for animal pose estimation that could generalize well,

even with little data, was to use transfer learning — the

ability to take a network that has been trained on one task to

perform another. The advantage is that these networks are

pretrained on larger datasets (for different tasks where a lot

of data is available like ImageNet), therefore they are

effectively imbued with good image representations. This

is indeed what ‘DeepLabCut’, the first tool to leverage the

advances in human pose estimation for application to

animals did [48��]. DeepLabCut was built on a subset of

‘DeeperCut’ [29��], which was an attractive option due to

its use of ResNets, which are powerful for transfer learning

[49,50]. Moreover transfer learning reduces training times

[49,50,51�], and there is a significant gain over using

randomly-initialized networks in performance, especially

for smaller datasets [50].

The major result from DeepLabCut was benchmarking

on smaller datasets and finding that only a few hundred

annotated images are enough to achieve excellent results

for diverse pose estimation tasks like locomotion, reach-

ing and trail-tracking in mice, egg-laying in flies and

hunting in cheetahs, due to transfer learning

(Figure 2f,g,h) [50,52,53�]. ‘DeepBehavior’, which uti-

lized different DNN-packages for various pose estima-

tion problems, also illustrated the gain of transfer learning

[51�].

2. Accuracy & speed

To be useful, pose estimation tools need to be as good as

human annotation of frames (or tracking markers, another

proxy for a human-applied label). DeepLabCut was

shown to reach human labeling accuracy [48��], and can

replace physical markers [58]. Moreover, they need to be

efficient (fast) for both offline analysis and online analysis.

Speed is often related to the depth of the network.

Stacked-hourglass networks, which use iterative refine-

ment [28,59] and fewer layers, are fast. Two toolboxes,
Current Opinion in Neurobiology 2020, 60:1–11
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Figure 2
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DNNs applied to animal pose estimation. (a) Knee tracking during cycling adopted from [54]. (b) 3D limb estimates from [52]. (c) A Lichen Katydid

tracked with DeepLabCut, courtesy of the authors. (d) Fly with LEAP annotated body parts. The circles indicate the 90% fraction for which

predicted positions of the particular body part are closer to the ground truth than the radii on test images (adopted from [55�]). (e) Density plot of

t-SNE plus frequency-transformed freely moving fly body-part trajectories. Patches with higher probability indicate more common movements like

different types of grooming behaviors (adopted from [55�]); (f) DeepLabCut requires little data to match human performance. Average error (RMSE)

for several splits of training and test data versus number of training images compared to RMSE of a human scorer. Each split is denoted by a

cross, the average by a dot. For 80% of the data, the algorithm achieves human level accuracy on the test set. As expected, test RMSE increases

for fewer training images. Around 100 diverse frames are enough to provide high tracking performance (<5-pixel accuracy — adopted from [48��]).
(g) Networks that perform better on ImageNet perform better for predicting 22 body parts on horses on within-domain (similar data distribution as

training set, red) and out-of-domain data (novel horses, black). The faint lines are individual splits. (adopted from [50]). (h) Due to the convolutional

network architecture, when trained on one mouse the network generalizes to detect body parts of three mice (adopted from [48��]). (i) 3D reaching

kinematics of rat (adopted from [56]). (j) 3D pose estimation on a cheetah for 2 example poses from 6 cameras as well es example 2D views

(adopted from [53�]). (k) Pupil and pupil-size tracking (adopted from [57]).

Current Opinion in Neurobiology 2020, 60:1–11 www.sciencedirect.com
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‘LEAP’ [55�] and ‘DeepPoseKit’ [60] adopted variants of

stacked-hourglass networks. LEAP allows the user to

rapidly compute postures, and then perform unsuper-

vised behavioral analysis (Figure 2d,e) [61]. This is an

attractive solution for real-time applications, but it is not

quite as accurate. For various datasets, DeepPoseKit

reports it is about three times as accurate as LEAP, yet

similar to DeepLabCut [60]. They also report about twice

faster video processing compared to DeepLabCut and

LEAP for batch-processing (on small frame sizes).

Deeper networks are slower, but often have more gener-

alization ability [49]. DeepLabCut was designed for

generalization and therefore utilized deeper networks

(ResNets) that are inherently slower than stacked-

hourglass networks, yet DeepLabCut can match human

accuracy in labeling (Figure 2f) [48��]. The speed has

been shown to be compatible with online-feedback appli-

cations (>50 Hz for reasonable frame sizes) [62,63,52].

Other networks recently added to DeepLabCut (with a

MobileNetV2 backbone) give slightly lower accuracy,

with twice the speed [50]. Overall, on GPU hardware

all packages are fast, and reach speeds of several hundred

frames per second in offline modes.

3. Robustness

Neuroscience experiments based on video recordings

produce large quantities of data and are collected over

extensive periods of time. Thus, analysis pipelines should

be robust to a myriad of perturbations: such as changes in

setups (backgrounds, light sources, cameras, etc.), subject

appearance (due to different animal strains), and com-

pression algorithms (which allow storage of perceptually

good videos with little memory demands [64]).

How can robustness be increased ? Both transfer learning

(discussed above) and data augmentation strategies

are popular and rapidly evolving approaches to increase

robustness in DNNs (see review [65]). Moreover, active

learning approaches allow an experimenter to continu-

ously build more robust and diverse datasets, for large

scale projects by expanding the training set with images,

where the network fails [48��,53�,55�]. So far, the tool-

boxes have been tested on data from the same distribu-

tion (i.e. by splitting frames from videos into test and

training data), which is important for assessing the per-

formance [55�, 60], but did not directly tested out-of-

domain robustness.

Over the course of long-term experiments the back-

ground or even animal strain can change, which means

having robust networks would be highly advantageous.

We recently tested the generalization ability of

DeepLabCut with different network backbones for pose

estimation. We find that pretraining on ImageNet

strongly improves out-of-domain performance, and that

better ImageNet performing networks are more robust
www.sciencedirect.com 
(Figure 2g) [50]. There is still a gap to close in out-of-

domain performance, however.

DeepLabCut is also robust to video compression, as

compression by more than 1,000X only mildly affects

accuracy (less than 1 pixel average error less) [52]. The

International Brain Lab (IBL) independently and syner-

gistically showed that for tracking multiple body parts in a

rodent decision making task, DeepLabCut is robust to

video compression [66]. Thus, in practice users can sub-

stantially compress videos, while retaining accurate pos-

ture information.

4. 3D animal pose estimation

Currently, there are several animal pose estimation tool-

boxes thatexplicitly support2Dand 3Dkey-pointdetection

[53�, 67, 68, 69]. DeepLabCut uses 2D pose estimation to

train a single camera-invariant 2D network (or multiple 2D

networks) that is then used to perform traditional triangu-

lation to extract 3D key points (Figure 2i,j; [53�,56]). A

pipeline built on DeepLabCut called ‘Anipose’ allows for

3D reconstruction from multiple cameras using a wider

variety ofmethods [67]. ‘DeepFly3D’ [68] uses the network

architecture from Newell et al. [28] and then adds tools to

compute an accurate 3D estimate of Drosophila melanogaster
by using the fly itself versus standard calibration boards.

Zhang et al. use epipolar geometry to train across views and

thereby improve 3D pose estimation for mice, dogs, and

monkeys [69].

5. Multi-animal & object tracking

Many experiments in neuroscience require measuring

interactions of multiple animals or interactions with

objects. Having the ability to both flexibly track user-

defined objects or multiple animals therefore is highly

desirable. There are many pre-deep learning algorithms

that allow tracking of objects (one such modern example

called ‘Tracktor’ also nicely summarizes this body of work

[70]). Recently researchers have also applied deep learning

to this problem. For example, the impressive ‘idTracker:ai’

[71] allows for users to track a hundred individual,

unmarked animals. Arac et al. used YOLO, a popular and

fast object localization network, for tracking two mice

during a social behavior [51�]. These, and others, can then

be combined with pose estimation packages for estimating

the pose of multiple animals. Currently, two paths are

possible: one is to apply pose estimation algorithms after

tracking individuals (for which any package could be used);

or, two, extract multiple detections for each part on each

animal (Figure 2h; [48��,72]) and link them using part

affinity fields [19��], pairwise predictions [29��], or geomet-

rical constraints [72], plus combinatorics.

The impact on experimental neuroscience
In the short time period these tools have become avail-

able there has been a rather wide adoption by the neuro-

science and ethology community. Beyond the original
Current Opinion in Neurobiology 2020, 60:1–11
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publications, DeepLabCut has already been used for pose

estimation and behavioral analysis in many contexts. For

instance, knee movement quantification during cycling

(Figure 2a) [54], postural analysis during underwater

running [73], social behavior in bats [74], for bench-

marking thermal constraints with optogenetics [75], fly

leg movement analysis [76,77], for 3D rat reaching

(Figure 2i) [56], hydra in a thermal stimulation assay

[78] and pupillometry (Figure 2k) [57]. Also inanimate

objects can be tracked, and it has indeed also been used to

track metal beads when subjected to a high voltage [79],

and magic tricks (i.e. coins and the magician) [80]. LEAP

[55�] has been used to track ants [81] and mice [82].

Pose estimation is just the beginning; the next steps

involve careful analysis of kinematics, building detailed,

multi-scale ethograms of behaviors, new modeling tech-

niques to understand large-scale brain activity and beha-

viors across a multitude of timescales, and beyond. We

envision three branches where powerful feature tracking

and extensions will be useful: motor control studies (often

involving complex motor actions), naturalistic behaviors

in the lab and in the wild, and better quantification of

robust and seemingly simple ‘non-motor’ tasks (Figure 3).

Many paradigms in neuroscience can be loosely arranged

along three branches as natural (i.e. mouse parenting

behavior), simple trial-based tasks (i.e. classical condi-

tioning), and/or complex motor actions like skilled reach-

ing (Figure 3). For example, you can have simple and

natural tasks such as licking for water, or complex and

natural behaviors such as escaping from a looming stimu-

lus that would rarely produce repeated trajectories. For

simplicity, here we discuss how pose estimation can

potentially enhance these studies along those three

branches, namely complex movements (Motor control

& kinematics), natural behaviors (Natural behaviors &

ethologically relevant features), and during simple motor-

output tasks (Revisiting classic tasks).

Motor control & kinematics

Often in neuroscience-minded motor control studies end-

effector proxies (such as manipulandums or joysticks) are

used to measure the motor behavior of subjects or ani-

mals. There are relatively few marker-tracking based

movement neuroscience studies, in which many degrees

of freedom were measured alongside neural activity, with

notable exceptions like [83,84]. The ease with which

kinematics of limbs and digits can now be quantified

[48��,51�,56,77] should greatly simplify such studies in the

future. We expect many more highly detailed kinematic

studies will emerge that utilize DNN-based analyses,

especially for freely moving animals, for small and aquatic

animals that cannot be marked, and for motor control

studies that can leverage large-scale recordings and

behavioral monitoring.
Current Opinion in Neurobiology 2020, 60:1–11 
Natural behaviors & ethologically relevant features

There is a trend in motor neuroscience towards natural

behaviors; that is, less constrained tasks, everyday-skills,

and even ‘in the wild’ studies [85]. For instance, we used

DeepLabCut for 3D pose estimation in hunting cheetah’s

captured via multiple Go-Pro cameras (Figure 2j; [53�]).
Another ‘in the wild example’ is given by a recent study

by Chambers et al. [86], who revisited the classic question

of how people synchronize their walking, but with a

modern twist by using videos from YouTube and analysis

with OpenPose [19��]. Consistent with studies performed

in the laboratory, they found a tendency for pairs of

people to either walk in or exactly out of phase [86].

How else can pose estimation help? Specialized body

parts often play a key role in ethologically relevant

behaviors. For instance, ants use their antenna to follow

odor trails [87], while moles use their snouts for sampling

bilateral nasal cues to localize odorants [88]. To accurately

measure such behaviors, highly accurate feature-

detectors of often tiny, highly dexterous bodyparts are

needed. This is a situation where deep learning algo-

rithms can excel. Pose estimation algorithms can not only

be used to detect the complete ‘pose’, but due to their

flexibility they are extremely useful to track ethologically

relevant body parts in challenging situations; incidentally

DeepLabCut was created, in part, to accurately track the

snouts of mice following odor trails that were printed onto

a treadmill [48��]. There are of course many other spe-

cialized body parts that are hard to track: like whiskers,

bee-stingers, jellyfish tentacles, or octopus arms, and we

believe that studying these beautiful systems in more

natural and ethologically relevant environments has now

gotten easier.

Revisiting classic tasks

Measuring behavior is already impacting ‘classic’ deci-

sion-making paradigms. For example, several groups

could show broad movement encoding across the brain

during decision-making tasks by carefully quantifying

behavior [89,90]. Moreover, large scale efforts to use these

‘simple’ yet robust trial-based behaviors across labs and

brain areas are leveraging deep learning, and comparing

their utility compared to classical behavior-monitoring

approaches. For example, the IBL has surmised that

DeepLabCut could replace traditional methods used

for eye, paw and lick detection [66]. We believe that

detailed behavioral analysis will impact many paradigms,

which were historically not considered ‘motor’ studies, as

now it is much easier to measure movement.

Remaining challenges in pose estimation

Advances indeep learninghave changedhoweasilyposture

can be measured and has impacted many studies. However,

pose estimation remains a hard computer vision problem

and challenges remain [16��,27,33, 91–93]. In the context of

multi-animal/human pose estimation, dealing with highly
www.sciencedirect.com
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Figure 3
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The behavioral space in neuroscience: new applications for deep learning-assisted analysis. This diagram depicts how pose estimation with non-

invasive videography can benefit behavioral paradigms that span from ‘trial-based behaviors’ such as classical conditioning, to ‘complex motor

behaviors/tasks’ as in 3D reaching assays, to ‘naturalistic tasks’, often without any trial structure, and that are more akin to real-world ‘tasks’ that

animals undertake. For example, a looming stimulus is ethologically relevant and complex, and pup-retrieval can be natural yet repeatable in a

laboratory setting. With new tools that allow for fast and accurate analysis of movement, these types of experiments become more feasible (with

much less human labor than previously required).
crowded scenes, in which different individuals cover each

other, remains highly challenging [27,33,91]. In general,

dealing with occlusions remains a challenge. In some

experiments occlusions are hard to avoid. Thus, networks

that can constraint body part detection based on anatomical

relationships can be advantageous, but are computationally

more complex and slower [29��]. As we highlighted in the

robustness section, it is hard to train networks to generalize

to out-of-domain scenarios [92,50,94]. Even though very

large data sets have been amassed to build robust DNNs

[19��,30–32], they can still fail in sufficiently different

scenarios [92,50,93]. Making robust networks will be highly

useful for creating shareable behavior- or animal-specific

networks that can generalize across laboratories. There will

also be much work towards even faster, lighter models.
www.sciencedirect.com 
Outlook & conclusions
The field of 2D, 3D, and dense pose estimation will

continue to evolve. For example, with respect to handling

occlusions and robustness to out-of-domain data. Perhaps

larger and more balanced datasets will be created to better

span the behavioral space, more temporal information will

be utilized when training networks or analyzing data, and

new algorithmic solutions will be found.

Will we always need training data? A hot topic in object

recognition is training from very few examples (one-shot

or zero-shot learning) [95]. Can this be achieved in pose

estimation? Perhaps as new architectures and training

regimes come to fruition this could be possible. Alterna-

tively, specialized networks could now be built that
Current Opinion in Neurobiology 2020, 60:1–11
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leverage large datasets of specific animals. It is hard to

envision a universal ‘animal pose detector’ network (for

object recognition this is possible) as animals have highly

diverse body plans and experimentalists often have

extremely different needs. Currently many individual

labs create their own specialized networks, but we

plan to create shareable networks for specific animals

(much like the specific networks, that is, hand network

in OpenPose [96], or the human-network in DeepLabCut

[29��]). For example, many open field experiments could

benefit from robust and easy-to-use DNNs for video

analysis across similar body points of the mouse. Indeed,

efforts are underway to create networks where one can

simply analyze their data without training, and we hope

the community will join these efforts. Nothing improves

DNNs more than more training data. These efforts,

together with making code open source, will contribute

to the reproducibility of science and make these tools

broadly accessible.

In summary, we aimed to review the progress in computer

vision for human pose estimation, how it influenced

animal pose estimation, and how neuroscience laborato-

ries can leverage these tools for better quantification of

behavior. Taken together, the tremendous advance of

computer vision has provided tools that are practical for

the use in the laboratory, and they will only get better.

They can be as accurate as human-labeling (or marker-

based tracking), and are fast enough for closed-loop

experiments, which is key for understanding the link

between neural systems and behavior. We expect that

in-light of shared, easy-to-use tools and additional deep

learning advances, there will be thrilling and unforeseen

advances in real-world neuroscience.
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