
Lecture 6

The FitzHugh-Nagumo Model

6.1 The Nature of Excitable Cell Models

Classically, it was known that the cell membrane carries a potential across the
inner and outer surfaces, hence a basic model for a cell membrane is that of a
capacitor and resistor in parallel. The model equation takes the form

Cm
dV

dt
= ¡V ¡ Veq

R
+ Iappl, (6.1)

where Cm is the membrane capacitance, R the resistance, Veq the rest potential,
V the potential across the inner and outer surfaces, and Iappl represents the ap-
plied current. In landmark patch clamp experiments in the early part of the 20th

century, it was determined that many cell membranes are excitable, i.e., exhibit
large excursions in potential if the applied current is su¢ciently large. Examples
include nerve cells and certain muscle cells, e.g., cardiac cells.

>From 1948-1952, Hodgkin and Huxley conducted patch clamp experiments
on the giant squid axon, a rather large part of nerve tissue suitable for exper-
imentation given the technology of the time. Based on their experiments, they
constructed a model for the patch clamp experiment in an attempt to give math-
ematical explanation for the axon’s excitable nature. A key part of their model
assumptions was that the membrane contains channels for potassium and sodium
ion ‡ow. In e¤ect, the 1/R factor in (6.1) became potential dependent for both
channels. The underlying model equation is:

Cm

dV

dt
= ¡gKn4(V ¡ VK)¡ gNam

3h(V ¡ VNa) ¡ gL(V ¡ VL) + Iappl. (6.2)

Here the subscripts K, Na, and L correspond to potassium, sodium, and leakage
channels, respectively. The terms gKn4, gNam

3h, and gL are the conductances
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(reciprocal of resistances). The variables n, m, and h are hypothesized potential
dependent gating variables whose dynamics were assumed to follow …rst order
kinetics. The equations take the form

τw(V )
dw

dt
= w1(V )¡ w, w = n,m, h, (6.3)

where τw(V ) and w1(V ) are the time constant and rate constant determined from
the experimental data.

Taken together, (6.2) and (6.3) represent a four dimensional dynamical system
known as the Hodgkin-Huxley model. It does provide a basis for qualitative ex-
planation of the formation of action potentials in the giant squid axon. Moreover,
the model structure forms a basis for virtually all models of excitable membrane
behaviour.

6.2 FitzHugh Model Reduction

In the mid-1950’s, FitzHugh sought to reduce the Hodgkin-Huxley model to a two
variable model for which phase plane analysis applies. His general observation was
that the gating variables n and h have slow kinetics relative to m. Moreover, for
the parameter values speci…ed by Hodgkin and Huxley, n + h is approximately
0.8. This led to a two variable model, called the fast-slow phase plane model, of
the form

Cm

dV

dt
= ¡gKn4(V ¡ VK)¡ gNam

3
1(V )(0.8¡ n)(V ¡ VNa)¡ gL(V ¡ VL) + Iappl

nw(V )
dn

dt
= n1(V )¡ n.

In e¤ect this provides a phase space qualitative explanation of the formation and
decay of the action potential. (See Keener & Sneyd1.)

A further observation due to FitzHugh was that the V -nullcline had the shape
of a cubic function and the n-nullcline could be approximated by a straight line,
both within the physiological range of the variables. This suggested a polynomial
model reduction of the form

dv

dt
= v(v ¡ α)(1¡ v) ¡ w + I

dw

dt
= ε(v ¡ γw). (6.4)

1J. Keener & J. Sneyd, Mathematical Physiology, Springer-Verlag (1998), p 133.
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Here, the model has been put in dimensionless form, v represents the fast variable
(potential), w represents the slow variable (sodium gating variable), α, γ, and ε
are constants with 0 < α < 1 and ε ¿ 1 (accounting for the slow kinetics of
the sodium channel). In 1964, Nagumo constructed a circuit using tunnel diodes
for the nonlinear element (channel) whose model equations are those of FitzHugh
(6.4). Hence the equations (6.4) have become known as the FitzHugh-Nagumo
model.

6.3 Simulations and Phase Plane

We assume the parameters are such that precisely one equilibrium point exists.
Further, we translate the model to place this equilibrium at (0, 0) as follows. Let

f(v) = v(v ¡ α)(1 ¡ v),

and let (veq, weq) be the equilibrium point for (6.4). Then we can write the model
equations in the form

dv

dt
= f (v + veq) ¡ f(veq) ¡ w

dw

dt
= ε(v ¡ γw).

Here we will illustrate the behaviour of the FitzHugh-Nagumo model using
“typical” values for the parameters. Two Hopf bifurcation phenomena will be
illustrated by varying veq and by varying α.

In the …rst case, we take values: α = 0.139, ε = 0.008, γ = 2.54. The plots are
shown in Figures 6.1 and 6.2 where we have set veq = 0.07 and = 0.15, respectively.
The phase portraits with nullclines are shown on the left. Note how the orbits are
driven by the nullclines. Further, note the position of the knee of the v-nullcline
in relation to the equilibrium point in the two …gures. (In the limit cycle case,
the knee is to the left.) Numerically, the actual bifurcation value is approximately
veq = 0.085.
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Figure 6.1: FitzHugh-Nagumo: veq = 0.07
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Figure 6.2: FitzHugh-Nagumo: veq = 0.15

In our second case we take veq = 0 and allow α to vary and take on negative
values. The plots are shown in Figures 6.3 and 6.4 where we have set α = 0.139
and = ¡0.139, respectively. The other parameters are ε = 0.008 and γ = 1.5.
Again we note in the phase plots how the orbits follow the nullcline …elds and the
location of the knee of the v-nullcline for the limit cycle.
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Figure 6.3: FitzHugh-Nagumo: α = 0.139
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Figure 6.4: FitzHugh-Nagumo: α = ¡0.139

6.4 Bifurcation Analysis

Here we will present the bifurcation analysis corresponding to Figures 6.3 and 6.4.
We will see that the bifurcation point is α0 = ¡εγ with a limit cycle bifurcating
for α < α0.

Computing the Jacobian we have

J = J(0, 0) =

· ¡α ¡1
ε ¡εγ

¸
.
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Hence, Tr(J ) = ¡(α+ εγ) and det(J) = ε(αγ +1). The eigenvalues are given by

λ =
¡(α + εγ)§

p
(α + εγ)2 ¡ 4ε(αγ + 1)

2
,

and the condition for the eigenvalues to be complex reads:

εγ ¡ 2ε1/2 < α < εγ +2ε1/2.

At α = ¡εγ, the eigenvalues are λ = §iη, where η =
p

ε(1 ¡ εγ2). The corre-
sponding eigenvectors are given by:

·
1

εγ ¡ iη

¸
and

·
1

εγ + iη

¸
.

We can transform the model equations into suitable form using the transformation

T =

·
1 0
εγ η

¸
, with T¡1 =

1

η

·
η 0

¡εγ 1

¸
.

Setting ·
v
w

¸
= T

·
x
y

¸
,

we obtain
·
_x
_y

¸
=

·
µ ¡η

¡εγµ
η
+ η 0

¸ ·
x
y

¸
+

"
(1¡ (µ+ εγ)x2 ¡ x3
¡εγ(1¡(µ+εγ)x2+εγx3

η

#
, (6.5)

where we have set µ = ¡(α+εγ). This is the form appropriate to apply Theorem
5.4. We have

d =
d

dµ
Reλ

¯̄
¯̄
α=¡εγ

=
1

2
> 0.

Further, denoting the nonlinear terms in (6.5) by f(x, y) and g(x, y), then

a =
1

16
fxxx+

1

16η
(¡fxxgxx)

¯̄
¯̄
(0,0,¡εγ)

= ¡3
8
+

γ

4

(1¡ εγ)2

1¡ εγ2
.

For the parameters given above (ε = 0.008, γ = 1.5) we have a = ¡0.02.. < 0.
Consequently we can conclude that a limit cycle bifurcates for µ > 0, i.e. α < ¡εγ.
This is what was desired.
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