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Salience: the primary condition for detection

v Detection is vital
v" Vision is limited (sleep)

v’ Hearing is very sensitive:
- despite distance and obstruction
- works even during sleep

A new approach to understand salience
= studying communication signals that aim at capturing attention.




A vital vocalization: screaming

screaming:
- essential to promote survival (e.g. newborns).

- propagate fast, cannot be interrupted or ignored.
- Innate and shared between many mammals

To be efficiently and exclusively processed as alarm signals, screams must:
» be distinguishable from other signals by using specific acoustic features
* be processed in an efficient (and unconditional) manner by the receivers’ brain.



The Modulation Power Spectrum (MPS)
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Temporal modulations in speech vs. screams

Hypothesis 1: screams must be distinguishable from other signals by using
specific acoustic features

sentence [a] (neutral) [a] (screamed)
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Arnal et al., Current Biol. 2015

» Speech temporal modulation (meaning) are mostly visible below 20 Hz
« Screams exhibit rough modulations (30-150 Hz), that minimally overlap with speech signals.




Roughness is selectively used to warn
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Arnal et al., Current Biol. 2015

Roughness is preserved to warn (alarm signals) and not used in neutral contexts:
* No roughness in musical or sentential vocalizations or in any of the tested languages.
« Artificial alarms exploit “scream-like” frequencies. (= not an epiphenomenon of vocal production)



Rough vocalizations sound ‘scared’

Behavioral ratings: 12 3 4 5
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weapons of distraction
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Aversiveness of infant cries in young fathers .»"5 s

Shaken Baby Syndrome (Collab. w/ J.K. Rilling, Emory University)

urgent piercing aversive
r=0.47, p=0.002 r=0.55, p<10-3 r=0.45, p=0.005
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* Responses to infant crying in both the (dAACC) and the anterior insula
* Roughness tracks the aversive quality of infant cries



Rough vocalizations are localized faster

(if) Screams must be processed efficiently and unconditionally by the receivers’ brain.

* k%

L R 1 * %%
< I
—
== = I -
g o Efficiency
2
&LED B Xa—pa | Xpr — pgr—
L 04 ORT-!
-1 A = Localization Accuracy (d-prime)

vocalization

S
N (%) N
scream _\\,‘,’b %C} %*(\ &
i o
L© °

synthetic scream (AM=100Hz)

RT-! = Reaction speed
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» Localization efficiency is higher for screams than neutral vocalization.

* Adding rough cues (AM = 100 Hz) to normal vocalizations improves localization so that
synthetic screams have the same efficiency as screams



Neural routing of rough sounds (1)

fMRI study: 3T, sparse sampling, cardiac gated acquisition

unpleasant neutral
natural screams vocalizations
artificial alarm sounds instruments
interval dissonant consonant

unpleasant vs. neutral

Arnal et al. Current Biol. 2015

« The bilateral auditory cortices and amygdala (danger processing)
are more activated by unpleasant (rough) than neutral sounds.



Neural routing of rough sounds (2)

Reverse-correlations: beta x MPS

MPS reverse-correlations
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« The amygdala (danger processing) is particularly sensitive to rough acoustic cues.
= preferential routing of rough sounds (alarm signals) to the amygdala?



Neural processing of aversive (rough) sounds

Current model

Auditory cortex
Slow route Fast route

- recognition T - arousal, emotions

- tonotopic (pitch) - non-tonotopic
wov |[ wom |

Auditory thalamus

rough sounds ﬁ modified from:
Ledoux, Ann. Rev. Neurosci. 2000




Early encoding of roughness

ERP regressions:
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Arnal et al. work in progress

« Early neural signals (P1) encode rough cues.
« Later components (N1/P2) concurrently represent roughness and pitch.



Roughness and pitch encoding during sleep
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Legendre et al. work in progress

» Differential encoding of roughness and pitch during wakefulness and REM
* Roughness and pitch affect evoked eye movements during REM sleep



The temporal sampling limit

Why do alarm signals specifically exploit rough sounds?

discrete percepts : continuous percept

<— ; —>
Click trains 25 50 100 200 Hz
H i i L
discrete responses integrated response
Brain responses <— —>
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limit

Hypotheses:

« Stimulating below the sampling limit temporally saturates the auditory system and maximizes
neural responses/time unit.

« This induces unpleasant percepts (analogous to strobe lights in vision) and possibly enhances
perception by increasing sensory salience per time unit = Temporal Salience



Perception around the sampling limit
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Arnal et al., submitted
* The roughness/pitch transition occurs at ~130 Hz

« Aversiveness (Salience) is a linear function of sound energy in the pitch range
* Non-linear effect below, temporal salience is maximal in the roughness range



Back in the ASSR (Auditory Steady-State Responses)

Hypothesis: Exogenous attention (salience) is imposed by exogenous Steady-State entrainment
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Epilepsy monitoring (n=5, Phase 2: before surgery)

Below the sampling limit
= Roughness: ASSR +++

Above the sampling limit:
= Pitch: No ASSR



Neural (gamma-band) responses to click trains
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« Onset gamma power correlates with stimulus energy (r?=0.75), but not salience (r=0.03)
* Onset gamma responses are mostly localized in early auditory areas

= Hypothesis: temporal salience not indexed by gamma but by the ability of stimuli to entrain
sustained brain responses across time.



Entrained/sustained responses (ASSR strength)
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ASSR strength (CAC) = stimulus-brain coherence

The coherence between the stimulus and brain responses (ASSR):

« correlates with salience (r?=0.57) but not energy (r?=0.06) in late sustained responses
» synchronizes electrodes in widespread auditory and non-auditory regions.



ASSR spatial spread and long-range synchrony
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+ Temporally salient click trains massively entrain and synchronize activity in auditory but also
—mostly— non-auditory electrodes.

* Long-range synchrony/connectivity patterns best account for subjective ratings.



Anatomo-functional selectivity

Stim-Brain Coherence in specific networks
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» Temporally salient sounds synchronize limbic, medial temporal and frontal regions:
= mix of sensory areas AND “salience” networks (aka pain/aversion networks)




Neural routing of roughness: intracranial recordings

Subjective salience (aversiveness)
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= Responses reflect pitch processing
in the classical auditory system

= Responses reflect aversion to
roughness in the salience network

auditory cortex salience network

Arnal et al. in revision



Routing of roughness through non-classical pathways?
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Gamma synchrony in photosensitive epilepsy

Photosensitive epilepsy Intermittent Photic Stimulation
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Prevalence of temporal >> occipital epilepsy (66 vs. 3 %).

Rough sounds (30-150 Hz) entrain gamma rhythms in temporo-limbic networks
often affected in temporal lobe epilepsy (TLE).

Hypothesis: rough sounds = A\ gamma = A temporal epileptic activity?



Phonosensitive low-frequency activity?

Comparison: visual (emotional faces) vs. auditory (screams) protocols
[stimulation minus rest, averaging about 40 * 5 seconds chunks, no cleaning]

Eplleptlform activity at rest

Faces blocs Screams blocs

Power (z-scored)
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Fearful voices (screams) induce more ‘epileptiform’ low-frequency
activity than fearful visual (faces) stimuli. = An effect of roughness?




An effect of roughness on epileptic activity ?

Measuring ‘sound-evoked’ epileptic spikes in medial temporal contacts:

preliminary data, no clear auditory responses in these contacts.

vocalization

screaTW

synthetic scream

Epileptic spikes / trial

500

* Rough sounds increase epileptic spiking (in those 3 shafts that spike most).
* Rough sounds also increased the spread of spiking across electrodes




[ Auditory System ] [ Salience system ]

Roughness-induced medial temporal epileptic activity ?
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The sound of salience: summary

Rough vocalizations sound scared, scary and are salient

Rough cues enhance behavioral (localization) efficiency

Rough sounds are routed to emotion related limbic areas.

Rough cues are encoded in early EEG responses

Rough cues may be encoded early in EEG responses during REM sleep

Rough sounds (below the ‘sampling limit’) are subjectively salient

Temporally salient (rough) sounds massively recruit the ‘salience system

Rough sounds enhance epileptic activity in temporo-limbic electrodes
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