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Introduction
• Signals can be treated in  

• Time domain 

• biological signals (EEG, ECG, EMG, MEG, …) are function of time 

• amplitude, variance, autocorrelation, cross-correlation, autoregressive 
coefficients, zero-crossing, …  

• Frequency domain 

• mostly distinguished information is hidden in frequency contents 

• spectral density estimation, Fourier transform, … 

• Time-frequency domain 

• time-varying signals, such as brain signals 

• short-time Fourier transform, wavelet analysis
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Stationarity vs. non-stationarity

• Stationary time series have constant properties over time 

• frequency, mean, variance, autocorrelation, … are constant  

• frequency domain analysis is suitable for stationary signals 

• Brain is a dynamic complex system  

• amplitude and frequency content of brain signals change over time 

• neural signals are non-stationary 

• How to deal with non-stationary signals? 

• segmentation and averaging 

• time-frequency representations

 4
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Frequency domain analysis
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Discrete Fourier Transform (DFT)

• Any waveform can be expressed as a weighted sum of sine/cosine waves! 

• DFT provides magnitude and phase at each frequency.
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The more frequencies you use – the closer 
you get to the original signal 

! 1
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! 3
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Remember the relation –

An abrupt change in the time 
domain will demand a wide 
range of frequencies to be 
reconstructed from.

" Use the time constants of 
the phenomenon you’re 
looking for to determine your 
sampling rate + a factor for 
increased resolution 
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Representing a sawtooth as sum of 10 sine waves. 
Source: Wikipedia
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Discrete Fourier Transform (DFT)
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% MATLAB

% 8 Hz with pi phase
comp1 = 1.0*cos(2*pi*8*time+pi);        
% 20 Hz with +pi/2 phase
comp2 = 0.5*cos(2*pi*20*time+pi/2); 
% 80 Hz with -pi/2 phase   
comp3 = 0.2*cos(2*pi*80*time-pi/2);
% Merge components
signal = comp1 + comp2 + comp3;

% and now Fast Fourier Transform (FFT)
fftSig = fft(signal);
fftSig = fftSig(1:lenSig/2+1);  % single-sided
freq = 0:sampFreq/lenSig:sampFreq/2;
absFFT = abs(fftSig/lenSig);  % absolute values

absFFT(2:end-1) = 2*absFFT(2:end-1);  % 
multiply single-sided spectrum by 2
 
phaseFFT = angle(fftSig); % phases of freqs.
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Power spectral density (PSD)

• FFT provides amplitude and phase of each contributing frequency 

• PSD describes how power of a signal is distributed over frequencies
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% MATLAB

% 8 Hz with pi phase
comp1 = 1.0*cos(2*pi*8*time+pi);        
% 20 Hz with +pi/2 phase
comp2 = 0.5*cos(2*pi*20*time+pi/2); 
% 80 Hz with -pi/2 phase   
comp3 = 0.2*cos(2*pi*80*time-pi/2);
% Merge components
signal = comp1 + comp2 + comp3;

% FFT
fftSig = fft(signal);               
fftSig = fftSig(1:lenSig/2+1);  % single-sided
freq = 0:sampFreq/lenSig:sampFreq/2;

absFFT = abs(fftSig/lenSig);  % absolute
absFFT(2:end-1) = 2*absFFT(2:end-1);  % 
multiply single-sided spectrum by 2

% PSD from FFT
psdFFT = 1/(sampFreq*lenSig) * abs(fftSig).^2;
psdFFT(2:end-1) = 2*psdFFT(2:end-1);
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Spectral leakage

• If the number of cycles of a frequency is not an integer (in a segment of data), 

endpoints are discontinuous.  

• These artificial discontinuities show up in the FFT as wide range of frequency 

components not present in the original signal.
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Spectral leakage and windowing

• This is unavoidable for DFT, but can be improved using windowing.
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Windowing functions

• There are several windowing functions for different situations/applications 

• Hanning, Hamming, Kaiser, … (see  http://ch.mathworks.com/help/signal/windows.html) 

• in general, the Hanning window is satisfactory in 95 percent of cases.
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surrounding the input signal is rectangular then the Fourier transform of the 
rectangular window is given by the sinc function: sinc x = sin(x) / x . 

2 WINDOWING 

“Windowing” amplitude modulates the input signal so that the spectral leakage is 
evened out (spreading on-bucket signals more and off-bucket signals less). Thus, 
windowing reduces the amplitude of the samples at the beginning and end of the 
window, altering leakage. Windowing is implemented by multiplying the input signal 
with a windowing function. An input signal can be of any number of dimensions and 
can be complex. For complex-values a complex multiplication is required. For the 
purpose of simplicity, we assume that the input signal is 1D and real-valued.  

Windowing functions are also called tapering functions or apodization functions. 
Apodization is from the Greek and literally means, „removing the feet“. It is the 
technical term for changing the shape of a signal by the use of a function that has a 
zero-value outside of a selected interval. It involves using a tapering function to 
smooth out the transitions. 

There are many common windowing functions. For example, the Hann filter 
(also called the hanning filter) is named after the Vienese metrologist, Julius 
Ferdinand von Hann (1839-1921). The Hann window is given by: 

 wj =
1
2

1− cos
2π j
N −1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥    j ∈ 0...N −1[ ] (5) 

The window falls off at -18 dB per octave. Figure 1 shows the Hann window. 

 

 

Figure 1. The Hann window  

The following code graphs the Hann window: 
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Some of famous windowing functions of length 100 samples

Hanning window:

% MATLAB

winLen = 100; % length of window in sample
 
rectWin = window(@rectwin,winLen); % Rectangular

hannWin = window(@hann,winLen); % Hanning

hammWin = window(@hamming,winLen); % Hamming

kaiserWin = window(@kaiser,winLen,1.5); % Kaiser

flattopWin = window(@flattopwin,winLen); % Flat top
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Choice of window
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Type of Signal Window function

Transients whose duration is shorter than the length of the window Rectangular 

Transients whose duration is longer than the length of the window Exponential, Hanning 

General-purpose applications Hanning 

Spectral analysis (frequency-response measurements) Hanning (for random excitation), Rectangular (for pseudorandom 
excitation) 

Separation of two tones with frequencies very close to each other but with widely 
differing amplitudes 

Kaiser-Bessel 

Separation of two tones with frequencies very close to each other but with almost 
equal amplitudes 

Rectangular 

Accurate single-tone amplitude measurements Flat top 

Sine wave or combination of sine waves Hanning 

Sine wave and amplitude accuracy is important Flat top 

Narrowband random signal (vibration data) Hanning 

Broadband random (white noise) Rectangular

Closely spaced sine waves Rectangular, Hamming 

Excitation signals (hammer blow) Force 

Response signals Exponential 

Unknown content Hanning

http://zone.ni.com/reference/en-XX/help/372614J-01/lvanlsconcepts/choosing_smoothing_window/



BENESCO, Department of Neurology, Inselspital, Bern 

Spectral leakage
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PSD of non-stationary and long signals

• Welch’s method is an improved PSD estimator, reduces noise by averaging 

• split up signal into overlapping segments 

• a window function (such as hamming) is applied on segments 

• squared magnitude of DFT is calculated for each segment 

• individual PSDs are averaged
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https://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing/powerspectra.htm
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PSD using Welch’s method

• “pwelch.m” function     [pxx,f] = pwelch(x,window,noverlap,f,fs) 

• Welch’s method vs. periodogram (no windowing)
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% MATLAB code
% rawSig and fs are provided in lecture notes
% rawSig is hippocampal LFP of mouse (fs = 1000 Hz)
t = 0:1/fs:(length(rawSig)-1)/fs;
subplot(211); plot(t,rawSig); box off
xlabel('Time (s)')
ylabel('Amplitude')

window = 4*fs; % 4-sec windows (resolution 0.25Hz)
overlap = round(0.5*window); % 50% overlap
[pxx,f] = pwelch(rawSig,window,overlap,fs,fs);
subplot(212); hold on
plot(f,10*log10(pxx),'linewidth',2); box off
xlim([0 80])
xlabel('Frequency (Hz)')
ylabel('Power (dB/Hz)’)
 
[pxx1,f1] = periodogram(rawSig,...
    rectwin(length(rawSig)),fs,fs);
plot(f1,10*log10(pxx1),'linewidth',2); hold off
xlim([0 80])
xlabel('Frequency (Hz)')
ylabel('Power (dB/Hz)’)
legend({'Welch method','Periodogram'})
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PSD - comparing some approaches
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What to do with FFT and PSD?

• Finding periodicities within neural signals in different states 

• e.g. slow wave and delta of NREM sleep 

• Quantifying power of frequencies in different conditions 

• e.g. delta, theta, alpha, beta, gamma, … 

• health vs disease 

• Spectral edge frequency and spectral edge power  

• spectral edge frequency: below which x% of total power of signal is located 

• spectral edge power: total power below the spectral edge frequency 

• Finding interfering signals (e.g. power line noise)

 17
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Conclusion - frequency domain analysis

• Useful to have a global view of frequency components of a signal 

• Suitable for stationary signals 

• the frequency content doesn’t change with time (time-invariant) 

• Loosing time information 

• when do transient changes occur? 

• which frequencies exist at a particular time.

 18
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Time-frequency representation (TFR)

• TFR provides information in time-frequency plane 

• Some applications in neural signal processing 

• analysis of event-related potential (ERP) 

• neurostimulation response analysis (Electrical / Optogenetics, TMS, …) 

• studying of epileptic seizures 

• recalling a specific memory 

• Some approaches  

• Short-time Fourier transform (spectrogram) 

• Wavelet transform (scalogram), wavelet coherence 

• Wigner distribution 

• Choi-Williams distribution 

• Matching pursuit

 19
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Short-Time Fourier Transform (STFT)

• Signals can be assumed quasi-stationary in short times 

• Short time definition depends on frequency content of signal 

• Window length should cover few cycles of main frequency component

 20
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STFT - MATLAB

• “spectrogram.m” function 

[s,f,t] = spectrogram(x,window,noverlap,f,fs) 
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% MATLAB code 
% rawSig and fs are provided in lecture notes
% rawSig is hippocampal LFP from mouse (fs = 1000 Hz)
 
window = 1*fs; % window size in sample
overlap = round(0.96*window); % overlap is an integer value
 
[SC,freq,time] = spectrogram(rawSig,window,overlap,2*fs,fs);
SC = abs(SC(freq>=minfreq&freq<=maxfreq,:));
freq = freq(freq>=minfreq&freq<=maxfreq);
args = {time,freq,SC.^2};
 
figure('Color',[1 1 1]);
surf(args{:},'edgecolor','none');
view(0,90);
axis tight;
shading interp;
colormap(parula(128));
h = colorbar;
h.Label.String = 'Power';
xlabel('Time (s)');
ylabel('frequency (Hz)');

NREM REM Wake
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STFT - effect of window length

• Tradeoff between time and frequency resolutions 

• a narrow window provides better time resolution, degrade freq. resolution 

• a wide window provides better freq. resolution, degrade time resolution

 22

Window length = 0.25 sec Window length = 1 sec Window length = 4 sec
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Wavelet transform

• Convolution between signal and scaled versions of a wavelet function.

 23

Freeman W., Quiroga R. Q., Imaging Brain Function With EEG, Springer, 2013
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Wavelet transform

• Multi-resolution nature of wavelet transform 

• Shorter windows of signal are considered for higher frequencies

 24

Erol S., Time-Frequency Analyses of Tide-Gauge Sensor Data, Sensors, 2011
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Wavelet transform vs. STFT

• STFT uses fixed window size for all frequencies 

• Wavelet transform has multi-resolution nature

 25

Mahjoubfar et al., Design of Warped Stretch Transform, Nat. Sci. Rep., 2015

fixed window varying window
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Wavelet transform using MATLAB

• Many wavelet functions in the wavelet toolbox of MATLAB. 

• “waveinfo” function lists supported wavelets 

• Continuous wavelet transform (CWT) 

coefs = cwt(x,scales,’wname’) 

• Discrete wavelet transform 

[C,L] = wavedec(X,N,’wname’)

 26
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Scale to frequency

• Each scale of wavelet function has a pseudo-frequency 

• an approximate relationship between scale and frequency 

F = scal2frq(A,’wname',DELTA)
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MATLAB help files

% MATLAB code
Fs = 1000; % sampling frequency of signal
t = 0:1/Fs:1-1/Fs; % time axis
x = 1.5*cos(2*pi*100*t).*(t<0.25)+1.5*cos(2*pi*50*t).*(t>0.5 & t<=0.75);
x = x+0.05*randn(size(t)); % add noise to signal
figure('Color',[1 1 1]);
subplot(211); plot(t, x)
xlabel('Time');
ylabel('Amplitude');
set(gca,'fontsize',12); box off
 
 numvoices = 32;
a0 = 2^(1/numvoices);
scales = a0.^(2*numvoices:1/numvoices:6*numvoices); % scales
cfs = cwt(x,scales,'morl'); % apply cwt
pfreq = scal2frq(scales,'morl',1/Fs); % match scale to frequency
subplot(212);
contour(t,pfreq,abs(cfs).^2);
axis tight;
grid on;
xlabel('Time');
ylabel('Approximate Frequency (Hz)');
title('CWT with Time vs Frequency');
set(gca,'fontsize',12); box off
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Wavelet transform

• Scalogram of hippocampal LFP (NREM, REM, Wake) using Morlet wavelet

 28

% MATLAB code 
% rawSig and fs are provided in lecture notes)
% rawSig is hippocampal LFP from mouse (fs = 1000 Hz)

% define min/max frequencies (Hz) for analysis
minfreq = 0.5; % min frequency
maxfreq = 20;  % max frequency
 
% finding corresponding scales for min/max frequencies
dt = 1/fs;   % time between two samples (1/sampling freq.)
f0 = 6/(2*pi); % central freq. of Morlet function ('morl')
NumVoices = 32;
a0 = 2^(1/NumVoices);
minscale = floor(NumVoices*log2(f0/(maxfreq*dt)));
maxscale = ceil(NumVoices*log2(f0/(minfreq*dt)));
scales = a0.^(minscale:maxscale).*dt;
 
% apply wavelet transform
cwtx = cwtft({rawSig,dt},'wavelet','morl','scales',scales);
 

NREM REM Wake
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Conclusion

• Short-time Fourier transform 

• suitable for narrowband signals 

• frequency bands of slow and fast oscillations are close 

• a fixed window length 

• improper for wideband signals 

• shorter duration of higher frequency components (e.g. gamma, ripples) 

• different window lengths for slow and fast oscillations 

• Multi-resolution time-frequency representation (e.g. wavelet transform) 

• suitable for both narrowband and wideband signals

 29
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Questions?
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