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What is this talk about?

Machine learning for sleep monitoring and understanding

» Automation of sleep scoring for high-throughput studies

» Computational modeling of sleep for acquiring new biological insights

Case studies - our present and future work



@ Introduction

@ Automated sleep scoring from EEG/EMG

@ Computational modeling of sleep mechanics



Introduction



Our research interests
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Dynamical systems

® Mathematical modeling of time-varying phenomena
® Statistical inference of parametrized models
® Structured and interpretable prediction

Learning of graph structures and dependencies
Sensor fusion - learning from multimodal data
Learning for control applications

etc.
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Automated sleep scoring
from EEG/EMG



Sleep scoring in animals
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» Sleep monitoring in animals is commonly done through vigilance state
classification of EEG/EMG recordings

» EEG/EMG signals are partitioned into short epochs of equal size

» Each epoch is then individually scored accordingly, w.r.t.
corresponding vigilance state



Sleep scoring in animals

EEG-Based System for
Recording Sleep-Wake

Typical experimental pipeline:

1. Perform "intervention" on an animal subset

2. Record EEG/EMG signals over some period of time
3. Manually score EEG/EMG
4

. Perform statistical posthoc analysis on scored data



Manual sleep scoring is a bottleneck

Slow!
Laborious
Prone to human errors

Non-standardized

vV V. v v v

Decoupled from posthoc analysis



Automating sleep scoring

Some research efforts aim to replace visual inspection

> Automation of sleep scoring for both animals” and humans

» Current state-of-the-art solution offer promising prediction
performance

» Some generalization issues of current solutions still remain

‘Sunagawa, G. A., Sei, H., Shimba, S., Urade, Y., & Ueda, H. R. (2013).
FASTER: an unsupervised fully automated sleep staging method for mice.
Genes to Cells, 18(6), 502-518.
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Current solutions take 2-step approach

1. Feature extraction 2. Classification

» Supervised classification (e.qg.
_J\I\,J\/h using SVMs or RFs)
» Clustering techniques for

unsupervised learning
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» Features = frequency band
energies

Problems with 2-step approach

» Feature inconsistency

» Different distribution for different cohorts

11



Problem: feature inconsistency across animal cohorts

Raw spectral profiles Coarse-grained binning Fine-grained binning

14 920 70
— CohortA|| 4 B CohortA BN CohortA
12 — Cohort8 B CohortB || ©° B CohortB
10 — CohortC mm CohortC[] 5o B CohortC
= CohortD Em CohortD Il CohortD
8 2 Y
<
6 30 ;
a4 20
2 10
5 10 15 20 < 15-24 0.5-2 2-4 4-7.5 7.59 9-12 12-1515-20 20-2«
35
5 30
2
4
B 20 =
Z, fri]
a 15 o
o =z
2
10
1 5
o o
5 10 15 20 0.52 2-4 4-75 7.59 9-12 12-1515-2020-2:
50
s a0
4
30
=
3 w
20 o
2
1 10
o o
5 10 15 20 X 59 9-15 15-24 0.52 2-4 4-75 7.59 9-12 12-1515-2020-2«

Frequency (Hz) 12



» "End-to-end" deep learning framework to combine the two steps

» Convolutional neural networks achieve translational invariance
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DeepFace architecture for facial recognition *

“TAIGMAN, Yaniv, et al. Deepface: Closing the gap to human-level
performance in face verification. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014. S. 1701-1708.
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Our proposal pipeline (paper under review)
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erformance comparison with other solutions
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Publicly available web service
http://sleeplearning.ethz.ch/
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Sleep Learning

About

"Plug and play" framework
Seamless integration with downstream analysis
Simple and efficient interaction with sleep practitioners

Possibility to include meta information
16


http://sleeplearning.ethz.ch/

Publicly available web service

http://sleeplearning.ethz.ch/
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http://sleeplearning.ethz.ch/

Computational modeling of
sleep mechanics




Machine learning and neuroscience: shared vision

Previous
Research

Descriptive?
(explain feature
organization)
Feature

Data-Driven Selection: Predictive?
Machine Direct Brain (predict system

Learning Measurements i
perturbations)
YES
>
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Hypothesis- (extrapolate across
Driven Model multiple subjects)
Experiments Development NO

Convergent?
(extrapolate across
multiple biological

contexts)

Vu et al. "A shared vision for machine learning in
neuroscience." Journal of Neuroscience, 2018
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Mechanism behind Neurodegenerative Diseases "
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*Ongoing work with Klaas Enno Stephan, Nico Gorbach, Frances Hubis,
Joachim M. Buhmann
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Zurich Exhalomics”
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Ongoing work with Pablo Sinues, Steven Brown



Sleeping Brain State Clustering

COHERENCE MATRIX | I BRAIN REGIONS GRAPH I | NODE EMBEDDINGS

Joint work with Emily Coffey, Steffen Gais, Jan Born.

GRAPH
EMBEDDINGS
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Sleeploop Zurich
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Joint work with Reto Huber, Walter Karlen, Christian Baumann.



Further Interests

Modeling of whole Brain Dynamics
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Further Interests

Modeling of whole Brain Dynamics

Interventional Studies based on Sleep Scoring
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Further Interests

Modeling of whole Brain Dynamics
Interventional Studies based on Sleep Scoring

Computational Modeling of Sleep

e.g. Costa et al. "A thalamocortical neural mass model of the
EEG during NREM Sleep and its response to auditory stimula-
tion." PLoS computational biology, 2016
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Further Interests

Modeling of whole Brain Dynamics

Interventional Studies based on Sleep Scoring
Computational Modeling of Sleep

e.g. Costa et al. "A thalamocortical neural mass model of the
EEG during NREM Sleep and its response to auditory stimula-
tion." PLoS computational biology, 2016

Meta-Data for Server
e.g. Niwa et al. "Muscarinic Acetylcholine Receptors Chrm1l
and Chrm3 Are Essential for REM Sleep." Cell reports, 2018.
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Further Interests

Modeling of whole Brain Dynamics
Interventional Studies based on Sleep Scoring

Computational Modeling of Sleep

e.g. Costa et al. "A thalamocortical neural mass model of the
EEG during NREM Sleep and its response to auditory stimula-
tion." PLoS computational biology, 2016

Meta-Data for Server

e.g. Niwa et al. "Muscarinic Acetylcholine Receptors Chrm1l
and Chrm3 Are Essential for REM Sleep." Cell reports, 2018.

Usage of the Sleep Server
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Questions?
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