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Introduction

Signals can be treated in
time domain
Most signals are function of time
frequency domain
Mostly distinguished information is hidden in freq. content
time-frequency domain

time-varying signals, such as brain signals



Frequency domain analysis

NREM

0.2mV

EEG 1

SWS
<1Hz

Delta
0.5-4 Hz

Spindle
11-16 Hz

1000 ms

10 s of EEG signal of mouse during non-REM sleep.
Filtered for SWS (Slow Wave Sleep), Delta activity and Spindling
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Discrete Fourier Transform (DFT)

Any waveform can be expressed as a weighted sum of sine/cosine waves!

DFT provides magnitude and phase at each frequency.
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Representing a sawtooth as sum of 10 sine waves.
Source: Wikipedia
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Discrete Fourier Transform (DFT)

Components of signal

% MATLAB

§
comp2 = 0.5*cos(2*pi*20*time+pi/2); %_
% 80 Hz with -pi/2 phase =
comp3 = 0.2*cos(2*pi*80*time-pi/2); <
signal = comp1 + comp2 + comp3;
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Power spectral density (PSD)

- FFT provides amplitude and phase of each contributing frequency

- PSD describes how power of a signal is distributed over frequency
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Spectral leakage

- If the number of cycles of a frequency is not an integer (in a sequence of data),

the endpoints are discontinuous.

- These artificial discontinuities show up in the FFT as other frequency

components not present in the original signal.
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Spectral leakage and windowing

- This is unavoidable for DFT, but can be improved using windowing.
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Windowing

- There are several window types for different situations/applications
- Hanning, Hamming, Kaiser, ... (see http://ch.mathworks.com/help/signal/windows.html)

- In general, the Hanning window is satisfactory in 95 percent of cases.
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Choice of window

Signal Content Window
Sine wave or combination of sine waves Hann
Sine wave (amplitude accuracy is important) Flat Top
Narrowband random signal (vibration data) Hann
Broadband random (white noise) Uniform
Closely spaced sine waves Uniform, Hamming
Excitation signals (hammer blow) Force
Response signals Exponential
Unknown content Hann
Sine wave or combination of sine waves Hann
Sine wave (amplitude accuracy is important) Flat Top
Narrowband random signal (vibration data) Hann
Broadband random (white noise) Uniform
Two tones with frequencies close but amplitudes very different Kaiser-Bessel
Two tones with frequencies close and almost equal amplitudes Uniform
Accurate single tone amplitude measurements Flat Top

INSTRUMENTS
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Spectral leakage
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Stationarity

A stationary time series has constant statistical properties over time, such as

mean, variance, and autocorrelation.

For stationary signals, frequency domain analysis works well
Brain is a dynamic complex system

Neural signals are non-stationary

Frequency content of neural signals changes with time
How to deal with time-varying signals?

Averaging

Time-frequency representations (TFRS)
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PSD of non-stationary and long signals

- Welch’s method is an improved PSD estimator, reduces noise by averaging

Individual PSDs are averaged

Split up signal into overlapping segments
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A window function (such as hamming) is applied on segments

Squared magnitude of DFT is calculated for each segment
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PSD using Welch's method

. “pwelch.m” function  [pxx,f] = pwelch(x,window,noverlap,f,fs)

- Compare welch’s method with periodogram (no windowing)

% MATLAB code

% rawSig and fs are provided in lecture notes

% rawSig is hippocampal LFP of mouse (fs = 1000 Hz)
t = 0:1/fs:(length(rawSig)-1)/fs; 1500
subplot(211); plot(t,rawSig); box off

2000 -

_ o 1000
xlabel( 'Time (s)') S
ylabel('Amplitude") 5 500
g
window = 4*fs; % 4-sec windows (min freqg 0.25Hz)
overlap = round(0.5*window); % 50% overlap ~500
[pxx,f] = pwelch(rawSig,window,overlap,fs,fs); -1000
subplot(212); hold on Time (s)

plot(£f,10*1logl0(pxx), 'linewidth',2); box off

x1lim([0 807])

xlabel( 'Frequency (Hz)") Weich method
)

(o))
o
1

ylabel( 'Magnitude (dB)' 40 Periodogram
S
[pxxl1l,fl] = periodogram(rawSig,... égo
rectwin(length(rawSig)), fs, fs); %20
plot(£f1,10*1ogl0(pxxl), 'linewidth',2); hold off é’

x1lim([0 80])

xlabel( 'Frequency (Hz)'")
ylabel ('Magnitude (dB)") % 10 20 30 20 50 60 70 80
legend({ 'Welch method', 'Periodogram'}) Frequency (Hz)
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PSD - comparing some approaches
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What to do with the PSD?

Finding possible periodicity in the signal

Quantifying power of desired frequency bands (e.g. delta, theta, alpha, beta,

gamma, ..., for brain signals)
Looking for interferences
Spectral edge frequency and spectral edge power

Spectral edge frequency stands for the frequency below which x percent of

the overall power of the signal is located.

Power covered under spectral edge frequency is called spectral edge

power
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Conclusion - frequency domain analysis

Useful to have a global view of signal in frequency domain
Suitable for stationary signals

The frequency contents don’t change with time
Loosing time information

When transient changes occur?

What frequencies are exist at a particular time?
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Time-frequency representation (TFR)

TFR provides information in time-frequency plane
Some applications in neural signal processing
Optogenetic/electrical stimulation response
-+ Avisual stimulus
Studying of epileptic seizures
- Analysis of Event-related potential (ERP)
Recalling a specific memory
Some approaches
Short-time Fourier transform (spectrogram)
- Wavelet transform (scalogram), wavelet coherence
- Wigner distribution
Choi-Williams distribution

Matching pursuit
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Short-Time Fourier Transform (STFT)

-+ Signals can be assumed quasi-stationary in short times

......

Amplitude
-
Frequency

lims Time
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STFT - MATLAB

- “spectrogram.m” function

[s.f,t] = spectrogram(x,window,noverlap,f,fs)

»101§

20 -
% MATLAB code
% rawSig and fs are provided in lecture notes 8 3~
% rawSig is hippocampal LFP from mouse (fs = 1000 Hz)
window = 1*fs; % window size in sample o |°
overlap = round(0.96*window); % overlap is an integer value

14

825

[SC,freq,time] = spectrogram(rawSig,window,overlap,2*fs,fs);

—
N

SC = abs(SC(freq>=minfreq&freq<=maxfreq,:));
freq = freq(freq>=minfreq&freq<=maxfreq);
args = {time,freq,SC.*2};

Puwer

frequency (Hz)
=)

figure('Color',[1 1 1]);
surf(args{:},'edgecolor','none’);
view(0,90); 6
axis tight;

shading interp;
colormap(parula(128));
h = colorbar;
h.Label.String = 'Power’;
xlabel('Time (s)');

@

ylabel(‘frequency (Hz)'); 5 10 — 15 20
NREM REM Wake
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STFT - effect of window width

+ Control the time and frequency resolutions
- Narrow window provides better time resolution, degrade freq. resolution

- Wide window provides better freq. resolution, degrade time resolution

416
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5 10 15 20 5 10 15 20 5 10 15 20
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Window length = 0.25 sec Window length = 1 sec Window length = 4 sec
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Conclusion - STFT

Is useful for signals having narrow frequency changes
The range of lower and higher frequency contents is limited.
Problem in wide-band signals

High frequency patterns have a shorter duration in comparison to low

frequency patterns.
A fixed window for all frequencies (as in STFT) would not work well.
Solution

Multi-resolution time-frequency representation
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Wavelet transform

Convolution between signal and scaled (stretched/shrunk) versions of wavelet

function.

Original signal

WWWWWWWWWWAWWWWWWWWWW

~ J\,v_’
> WAVELET TRANSFORM '\/\/\/\i—"
—'—\/\/\/\_’

Freeman W., Quiroga R. Q., Imaging Brain Function With EEG, Springer, 2013
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Wavelet transform

-  Multi-resolution nature of wavelet transform

- Shorter windows of signal are considered for higher frequencies
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Wavelet transform vs. STFT

- STFT uses fixed window size for all frequencies

- Wavelet transform has multi-resolution nature

e f
() Short-time Fourier Transform (f) Wavelet Transform

'\

Frequency t Frequency

fixed window varying window

Acquisition
Bandwidth

Acquisition I
Bandwidth

>
Time Time

Mahjoubfar et al., Design of Warped Stretch Transform, Nat. Sci. Rep., 2015
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Wavelet transform - MATLAB

There are many mother wavelets in the MATLAB wavelet toolbox.
“‘waveinfo.m” function of MATLAB lists supported wavelets
Some functions

Continuous wavelet transform (CWT)

coefs = cwt(x,scales,’'wname’)
CWT using FFT algorithm (faster than cwt function)
cwtstruct = cwitft(sig,Name,Value)
Discreet wavelet transform

[C,L] = wavedec(X,N,’'wname’)
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Scale to frequency

- Each scale of wavelet function has a pseudo-frequency

- An approximate relationship between scale and frequency)

F = scal2frg(A,’ wname',DELTA)

% MATLAB code

Fs =1000; % sampling frequency of signal

t = 0:1/Fs:1-1/Fs; % time axis 2r

x = 1.5%cos(2*pi*100*t).*(t<0.25)+1.5*cos(2*pi*50*t).*(t>0.5 & t<=0.75); "“l“'”’||”|!”“”|l LIvrtatigttld

x = x+0.05*randn(size(t)); % add noise to signal | 1 |

figure('Color',[1 1 1]); o |11 [TTW Ny P

subplot(211); plot(t, x) (HHEHH |

xlabel( Time'); (LA EETTEYLT

ylabel('Amplitude’); R 1 ‘ 1 1 1 | ]

set(gca, fontsize’,12); box off ‘0 o' 0z 03 04 05 06 0T D0& 09 1
Time

CWT with Time vs Frequency

Ampltuda

numvoices = 32;

a0 = 2*(1/numvoices);

scales = a0.*(2*numvoices:1/numvoices:6*numvoices); % scales
cfs = cwt(x,scales,' morl"); % apply cwt

pfreq = scal2frq(scales,'morl',1/Fs); % match scale to frequency
subplot(212);

contour(t,pfreq,abs(cfs).*2);

axis tight;

grid on; ! i , |
xlabel("Time'); 0o o0 02 0228 04 05 06 OT O0& 09
ylabel('Approximate Frequency (Hz)"); Time

title('CWT with Time vs Frequency');

set(gca, fontsize',12); box off MATLAB help files

g

Approximate Freguency (Hz)
g




Wavelet transform - application

+ Scalogram of hippocampal LFP recorded from mouse (NREM, REM, Wake)
using Morlet wavelet

% MATLAB code
% rawSig and fs are provided in lecture notes)
% rawsSig is hippocampal LFP from mouse (fs = 1000 Hz) x10’
minfreq = 0.5; % minimum frequency for CWT 20
maxfreq = 20; % maximum frequency for CWT

18

dt = 1/fs; % time between two samples (1/sampling freq.) 18
time = dt:dt:length(rawSig)/fs; % define time axis 16
fO = 6/(2*pi); % central frequency of wavelet function (‘morl’) 47

NumVoices = 32;

a0 = 2*%(1/NumVoices);

minscale = f0/(maxfreq*dt);

maxscale = f0/(minfreq*dt);

minscale = floor(NumVoices*log2(minscale));

maxscale = ceil(NumVoices*log2(maxscale));

scales = a0.*(minscale:maxscale).*dt;

cwtx = cwtft({rawSig,dt},'wavelet','morl','scales’,scales); % CWT
SC = abs(cwtx.cfs);

freq = cwtx.frequencies; 6
args = {time,freq,SC.*2};

=
I~

=
[\
Power

Frequency (Hz)
)

[s.¢]

figure('Color',[1 1 1]);
surf(time,cwtx.frequencies,abs(cwtx.cfs).A2,'edgecolor’,'none’); >
view(0,90);

axis tight;

shading interp;

colormap(parula(128));

h = colorbar;

h.Label.String = 'Power’;

xlabel('Time (s)');

ylabel('Frequency (Hz)'); NREM REM Wake

Time (s)
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Frequency analysis of two signals

Cross power spectral density (CPSD) Provides information on
the power shared by a given frequency for the two signals
the phase shift information between the two signals (time lag).

|s obtained using PSD of cross-correlation of two signals

() Z R (m)e=/om

Xy
M=—00 -

e %
Cross-correlation *R ﬂ?) = { ;[+”l \’;/‘ } = E {.X;’] '\;’l H'I}
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Cross power spectral density

e “cpsd.m” function

[Pxy,F] = cpsd(x,y,window.noverlan.nfft.fs)

Welch Power Spectral Density Estimate
T T T T T

o

N
o

A
)

% MATLAB code

D
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (x= rad/sample)

Welch Power Spectral Density Estimate
T T T T T

Power/frequency (dB/rad/sample)

h1 = ones(1,10)/sqrt(10);

h2 = fir1(30,0.2,rectwin(31));
r = randn(16384,1);

x = filter(h1,1,r);

y = filter(h2,1,x);

o

N
o

A
o

figure('Color',[1 1 1]);

Power/frequency (dB/rad/sample)

subplot(311); pwelch(x,500,250,1024); ylim([-60 10]) 60
subplot(312); pwelch(y,500,250,1024); ylim([-60 10]) Y malized Frequeney (nradisamuy
SUbDIOt(31 3), Cde(X,y,500,250,1024); y||m(['60 10]) g Welch Cross Power Spectral Density Estimate

§ -60

&3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (x 7 rad/sample)

MATLAB help files
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Time-frequency analysis of two signals

The cross examination of the two CWT decompositions obtained from two

signals
can reveal localized similarities in time-scale plane.
can reveals common time-varying patterns

Wavelet cross spectrum and coherence are two measures
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Wavelet cross spectrum

The cross spectrum of two signals (x,y) denotes the fraction of covariance at

each scale a and time b.

Cyla,b) = S(C;(a,b)C,(a,b))

The phase spectrum denotes the phase difference between the signals at

each scale a and time b.



Wavelet cross spectrum - MATLAB

Analyzed Signal Analyzed Signal

0.5

-0.5 H

200 400 600 800 1000 200 400 600 800 1000

Continuous Wavelet Transform (CWT)

Modulus Modulus
469 469
417 417
% MATLAB code 365 365
313 313
. 261 261
wname = 'cgau2’; % wavelet function 209 209
scales = 1:512; % scales to plot 132 :g;
ntw = 21; % length of moving average 53 53
1 200 400 600 800 1000 1 200 400 600 800 1000
t = linspace(0,1,1024); % time
x = -sin(8*pi*t) + 0.4*randn(1,1024); 1 Analyzed Signals | |
x = x/max(abs(x)); % first signal
y = wnoise('doppler',10); % second signal O'Z W rw" {l ML” | MMII“
' ' ' (N . “ " Ilw %w” Ml “m
wcoher(x,y,scales,wname,'ntw',ntw, plot','cwt"); 05 A ' ]
f| g ure ’ 1 00 200 300 400 500 600 7(I)0 8(I)O 9(I)0 1 OIOO

wcoher(x,y,scales,wname,'ntw',ntw, nsw',1,'plot','wcs"); Wavelet Cross Spectrum (WCS)

Modulus

469
417
365
313
261
209
157
105

53

Scales

100 200 300 400 500 600 700 800 900 1000

Times

MATLAB help files
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Wavelet coherence

- Time-varying coherence is a powerful tool for revealing functional dynamics
between different regions in the brain.

Is the normalized cross-spectrum with respect to the spectrum of each signal
(a value between 0 and 1)

S(C:(a,b)C,(a,b))|’
S(|C.(a,b)2S(|C,(a, b)?




Wavelet coherence

- Measure the degree of a linear relationship between the two signals at different

scales and times.

- “wcoher.m” function of MATLAB provides

Wavelet Coherence

X Signal

Y A

tTeTreTTART AR YYLARRARRALSE

Amplitude
et
ﬂ

o
o

0 1 2 3 “ 5 €

Y Signal

o
»

Frequency (Hz)
o
)
Magnitude-Squared Coherence

O
w

=’
N

o

o

Seconds
Time (secs)

MATLAB help files
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Questions?
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