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Introduction
• Signals can be treated in  

• time domain 

• Most signals are function of time 

• frequency domain 

• Mostly distinguished information is hidden in freq. content 

• time-frequency domain 

• time-varying signals, such as brain signals
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Frequency domain analysis
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Discrete Fourier Transform (DFT)

• Any waveform can be expressed as a weighted sum of sine/cosine waves! 

• DFT provides magnitude and phase at each frequency.
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reconstructed from.
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increased resolution 
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Representing a sawtooth as sum of 10 sine waves. 
Source: Wikipedia
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Discrete Fourier Transform (DFT)
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% MATLAB 
% 8 Hz with pi phase 
comp1 = 1.0*cos(2*pi*8*time+pi);         
% 20 Hz with +pi/2 phase 
comp2 = 0.5*cos(2*pi*20*time+pi/2);  
% 80 Hz with -pi/2 phase    
comp3 = 0.2*cos(2*pi*80*time-pi/2); 
signal = comp1 + comp2 + comp3;
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Power spectral density (PSD)

• FFT provides amplitude and phase of each contributing frequency 

• PSD describes how power of a signal is distributed over frequency
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Spectral leakage

• If the number of cycles of a frequency is not an integer (in a sequence of data), 

the endpoints are discontinuous.  

• These artificial discontinuities show up in the FFT as other frequency 

components not present in the original signal.
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Spectral leakage and windowing

• This is unavoidable for DFT, but can be improved using windowing.
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Windowing

• There are several window types for different situations/applications 

• Hanning, Hamming, Kaiser, … (see  http://ch.mathworks.com/help/signal/windows.html) 

• In general, the Hanning window is satisfactory in 95 percent of cases.
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surrounding the input signal is rectangular then the Fourier transform of the 
rectangular window is given by the sinc function: sinc x = sin(x) / x . 

2 WINDOWING 

“Windowing” amplitude modulates the input signal so that the spectral leakage is 
evened out (spreading on-bucket signals more and off-bucket signals less). Thus, 
windowing reduces the amplitude of the samples at the beginning and end of the 
window, altering leakage. Windowing is implemented by multiplying the input signal 
with a windowing function. An input signal can be of any number of dimensions and 
can be complex. For complex-values a complex multiplication is required. For the 
purpose of simplicity, we assume that the input signal is 1D and real-valued.  

Windowing functions are also called tapering functions or apodization functions. 
Apodization is from the Greek and literally means, „removing the feet“. It is the 
technical term for changing the shape of a signal by the use of a function that has a 
zero-value outside of a selected interval. It involves using a tapering function to 
smooth out the transitions. 

There are many common windowing functions. For example, the Hann filter 
(also called the hanning filter) is named after the Vienese metrologist, Julius 
Ferdinand von Hann (1839-1921). The Hann window is given by: 

 wj =
1
2

1− cos
2π j
N −1

⎛
⎝⎜

⎞
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⎡

⎣
⎢

⎤

⎦
⎥    j ∈ 0...N −1[ ] (5) 

The window falls off at -18 dB per octave. Figure 1 shows the Hann window. 

 

 

Figure 1. The Hann window  

The following code graphs the Hann window: 
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Choice of window
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Spectral leakage
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Stationarity

• A stationary time series has constant statistical properties over time, such as 

mean, variance, and autocorrelation. 

• For stationary signals, frequency domain analysis works well 

• Brain is a dynamic complex system  

• Neural signals are non-stationary 

• Frequency content of neural signals changes with time 

• How to deal with time-varying signals? 

• Averaging 

• Time-frequency representations (TFRs)

13
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PSD of non-stationary and long signals

• Welch’s method is an improved PSD estimator, reduces noise by averaging 

• Split up signal into overlapping segments 

• A window function (such as hamming) is applied on segments 

• Squared magnitude of DFT is calculated for each segment 

• Individual PSDs are averaged

14

https://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing/powerspectra.htm
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PSD using Welch’s method

• “pwelch.m” function     [pxx,f] = pwelch(x,window,noverlap,f,fs) 

• Compare welch’s method with periodogram (no windowing)

15

% MATLAB code 
% rawSig and fs are provided in lecture notes 
% rawSig is hippocampal LFP of mouse (fs = 1000 Hz) 
t = 0:1/fs:(length(rawSig)-1)/fs;
subplot(211); plot(t,rawSig); box off
xlabel('Time (s)')
ylabel('Amplitude')

window = 4*fs; % 4-sec windows (min freq 0.25Hz)
overlap = round(0.5*window); % 50% overlap
[pxx,f] = pwelch(rawSig,window,overlap,fs,fs);
subplot(212); hold on
plot(f,10*log10(pxx),'linewidth',2); box off
xlim([0 80])
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
 
[pxx1,f1] = periodogram(rawSig,...
    rectwin(length(rawSig)),fs,fs);
plot(f1,10*log10(pxx1),'linewidth',2); hold off
xlim([0 80])
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
legend({'Welch method','Periodogram'})

0 5 10 15 20 25
Time (s)

-1000

-500

0

500

1000

1500

2000

Am
pl

itu
de

0 10 20 30 40 50 60 70 80
Frequency (Hz)

0

10

20

30

40

50
M

ag
ni

tu
de

 (d
B)

Welch method
Periodogram



BENESCO, Department of Neurology, Inselspital, Bern 

PSD - comparing some approaches
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What to do with the PSD?

• Finding possible periodicity in the signal 

• Quantifying power of desired frequency bands (e.g. delta, theta, alpha, beta, 

gamma, …, for brain signals) 

• Looking for interferences  

• Spectral edge frequency and spectral edge power  

• Spectral edge frequency stands for the frequency below which x percent of 

the overall power of the signal is located. 

• Power covered under spectral edge frequency is called spectral edge 

power 

• …

17
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Conclusion - frequency domain analysis

• Useful to have a global view of signal in frequency domain 

• Suitable for stationary signals 

• The frequency contents don’t change with time 

• Loosing time information 

• When transient changes occur? 

• What frequencies are exist at a particular time?
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Time-frequency representation (TFR)
• TFR provides information in time-frequency plane 

• Some applications in neural signal processing 

• Optogenetic/electrical stimulation response 

• A visual stimulus 

• Studying of epileptic seizures 

• Analysis of Event-related potential (ERP) 

• Recalling a specific memory 

• Some approaches  

• Short-time Fourier transform (spectrogram) 

• Wavelet transform (scalogram), wavelet coherence 

• Wigner distribution 

• Choi-Williams distribution 

• Matching pursuit

19
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Short-Time Fourier Transform (STFT)

• Signals can be assumed quasi-stationary in short times

20
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STFT - MATLAB

• “spectrogram.m” function 

[s,f,t] = spectrogram(x,window,noverlap,f,fs) 

21

% MATLAB code  
% rawSig and fs are provided in lecture notes 
% rawSig is hippocampal LFP from mouse (fs = 1000 Hz) 
  
window = 1*fs; % window size in sample 
overlap = round(0.96*window); % overlap is an integer value 
  
[SC,freq,time] = spectrogram(rawSig,window,overlap,2*fs,fs); 
SC = abs(SC(freq>=minfreq&freq<=maxfreq,:)); 
freq = freq(freq>=minfreq&freq<=maxfreq); 
args = {time,freq,SC.^2}; 
  
figure('Color',[1 1 1]); 
surf(args{:},'edgecolor','none'); 
view(0,90); 
axis tight; 
shading interp; 
colormap(parula(128)); 
h = colorbar; 
h.Label.String = 'Power'; 
xlabel('Time (s)'); 
ylabel('frequency (Hz)'); 

NREM REM Wake
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STFT - effect of window width

• Control the time and frequency resolutions 

• Narrow window provides better time resolution, degrade freq. resolution 

• Wide window provides better freq. resolution, degrade time resolution

22

Window length = 0.25 sec Window length = 1 sec Window length = 4 sec
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Conclusion - STFT

• Is useful for signals having narrow frequency changes 

• The range of lower and higher frequency contents is limited. 

• Problem in wide-band signals 

• High frequency patterns have a shorter duration in comparison to low 

frequency patterns. 

• A fixed window for all frequencies (as in STFT) would not work well. 

• Solution 

• Multi-resolution time-frequency representation

23
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Wavelet transform

• Convolution between signal and scaled (stretched/shrunk) versions of wavelet 

function.

24

Freeman W., Quiroga R. Q., Imaging Brain Function With EEG, Springer, 2013
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Wavelet transform

• Multi-resolution nature of wavelet transform 

• Shorter windows of signal are considered for higher frequencies

25

Erol S., Time-Frequency Analyses of Tide-Gauge Sensor Data, Sensors, 2011
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Wavelet transform vs. STFT

• STFT uses fixed window size for all frequencies 

• Wavelet transform has multi-resolution nature

26

Mahjoubfar et al., Design of Warped Stretch Transform, Nat. Sci. Rep., 2015

fixed window varying window
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Wavelet transform - MATLAB

• There are many mother wavelets in the MATLAB wavelet toolbox. 

• “waveinfo.m” function of MATLAB lists supported wavelets 

• Some functions 

• Continuous wavelet transform (CWT) 

coefs = cwt(x,scales,’wname’) 

• CWT using FFT algorithm (faster than cwt function) 

cwtstruct = cwtft(sig,Name,Value) 

• Discreet wavelet transform 

[C,L] = wavedec(X,N,’wname’)

27
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Scale to frequency

• Each scale of wavelet function has a pseudo-frequency 

• An approximate relationship between scale and frequency) 

F = scal2frq(A,’wname',DELTA)

28

MATLAB help files

% MATLAB code  
Fs = 1000; % sampling frequency of signal 
t = 0:1/Fs:1-1/Fs; % time axis 
x = 1.5*cos(2*pi*100*t).*(t<0.25)+1.5*cos(2*pi*50*t).*(t>0.5 & t<=0.75); 
x = x+0.05*randn(size(t)); % add noise to signal 
  
figure('Color',[1 1 1]); 
subplot(211); plot(t, x) 
xlabel('Time'); 
ylabel('Amplitude'); 
set(gca,'fontsize',12); box off 
  
 numvoices = 32; 
a0 = 2^(1/numvoices); 
scales = a0.^(2*numvoices:1/numvoices:6*numvoices); % scales 
cfs = cwt(x,scales,'morl'); % apply cwt 
pfreq = scal2frq(scales,'morl',1/Fs); % match scale to frequency 
subplot(212); 
contour(t,pfreq,abs(cfs).^2); 
axis tight; 
grid on; 
xlabel('Time'); 
ylabel('Approximate Frequency (Hz)'); 
title('CWT with Time vs Frequency'); 
set(gca,'fontsize',12); box off
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Wavelet transform - application

• Scalogram of hippocampal LFP recorded from mouse (NREM, REM, Wake) 

using Morlet wavelet

29

% MATLAB code  
% rawSig and fs are provided in lecture notes) 
% rawSig is hippocampal LFP from mouse (fs = 1000 Hz) 
minfreq = 0.5; % minimum frequency for CWT 
maxfreq = 20;  % maximum frequency for CWT 
  
dt = 1/fs;           % time between two samples (1/sampling freq.) 
time = dt:dt:length(rawSig)/fs; % define time axis 
f0 = 6/(2*pi);       % central frequency of wavelet function ('morl') 
NumVoices = 32; 
a0 = 2^(1/NumVoices); 
minscale = f0/(maxfreq*dt); 
maxscale = f0/(minfreq*dt); 
minscale = floor(NumVoices*log2(minscale)); 
maxscale = ceil(NumVoices*log2(maxscale)); 
scales = a0.^(minscale:maxscale).*dt; 
cwtx = cwtft({rawSig,dt},'wavelet','morl','scales',scales); % CWT 
SC = abs(cwtx.cfs); 
freq = cwtx.frequencies; 
args = {time,freq,SC.^2}; 
  
figure('Color',[1 1 1]); 
surf(time,cwtx.frequencies,abs(cwtx.cfs).^2,'edgecolor','none'); 
view(0,90); 
axis tight; 
shading interp; 
colormap(parula(128)); 
h = colorbar; 
h.Label.String = 'Power'; 
xlabel('Time (s)'); 
ylabel('Frequency (Hz)'); NREM REM Wake
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Frequency analysis of two signals

• Cross power spectral density (CPSD) Provides information on  

• the power shared by a given frequency for the two signals 

• the phase shift information between the two signals (time lag). 

• Is obtained using PSD of cross-correlation of two signals

30

Cross-correlation
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Cross power spectral density

• “cpsd.m” function  

[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs) 
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% MATLAB code  
  
h1 = ones(1,10)/sqrt(10); 
h2 = fir1(30,0.2,rectwin(31)); 
r = randn(16384,1); 
x = filter(h1,1,r); 
y = filter(h2,1,x); 
  
figure('Color',[1 1 1]); 
subplot(311); pwelch(x,500,250,1024); ylim([-60 10]) 
subplot(312); pwelch(y,500,250,1024); ylim([-60 10]) 
subplot(313); cpsd(x,y,500,250,1024); ylim([-60 10]) 

MATLAB help files
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Time-frequency analysis of two signals

• The cross examination of the two CWT decompositions obtained from two 

signals 

• can reveal localized similarities in time-scale plane. 

• can reveals common time-varying patterns 

• Wavelet cross spectrum and coherence are two measures

32
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Wavelet cross spectrum

• The cross spectrum of two signals (x,y) denotes the fraction of covariance at 

each scale a and time b.  

• The phase spectrum denotes the phase difference between the signals at 

each scale a and time b.

33
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Wavelet cross spectrum - MATLAB
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MATLAB help files

% MATLAB code  
  
wname  = 'cgau2'; % wavelet function 
scales = 1:512;   % scales to plot 
ntw = 21;         % length of moving average 
  
t = linspace(0,1,1024); % time 
x = -sin(8*pi*t) + 0.4*randn(1,1024); 
x = x/max(abs(x));        % first signal 
y = wnoise('doppler',10); % second signal 
  
wcoher(x,y,scales,wname,'ntw',ntw,'plot','cwt'); 
  
figure; 
wcoher(x,y,scales,wname,'ntw',ntw,'nsw',1,'plot','wcs'); 
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Wavelet coherence

• Time-varying coherence is a powerful tool for revealing functional dynamics 

between different regions in the brain. 

• Is the normalized cross-spectrum with respect to the spectrum of each signal 

(a value between 0 and 1)

35
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Wavelet coherence

• Measure the degree of a linear relationship between the two signals at different 

scales and times. 

• “wcoher.m” function of MATLAB provides

36

MATLAB help files



BENESCO, Department of Neurology, Inselspital, Bern 

Questions?

37


