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Introduction - Synchronisation and cross-frequency coupling
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(a) Power of the gamma oscillations are Power
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(b) In each slow cycle, there are four faster Phase

cycles and their phase relationship to

remains fixed. phase

(c) The frequency of the fast oscillations is Phase

modulated by the phase of the slower to
oscillations. frequency

(d) The power of the gamma oscillations is Phase
modulated by the phase of the theta to
oscillations. power
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An integrative view of memory-related synchronization
mechanisms

Mechanisms
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Phase synchronisation
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Functional roles of phase synchronisation
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Theta synchronization and plasticity
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Between multiple brain regions
allows for efficient information
transfer (indicated by the
arrows) during excitable periods.

The propensity of action
potentials that are propagated
from region 2 to region 1 to
induce synaptic plasticity in
region 1 depends on the theta
phase in region 1 during which
the action potentials arrive.

Fell J. and Axmacher N., Nature Review, 2011
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Measuring phase synchronisation

* |nstantaneous phase of each signal is calculated from analytic signal, which is
obtained from Hilbert transform.

e The analytic signal: x = xr + I*xi
* Real part: xr, which is raw data

e Imaginary part, xi, which is Hilbert transform

 The imaginary part is a version of the original real sequence with a 90° phase
shift (sines are transformed to cosines and conversely).

* Mean of differences of instantaneous phases as Mean Phase Coherence
(MPC) or Phase-Locking Value (PLV)
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Mean Phase Coherence in MATLAB

* Instantaneous phase of signals are extracted using analytical form of signals (Hilbert phase)
« phasel = angle(hilbert(signall));
o phase?2 = angle(hilbert(signal?)); N
«  MPC is absolute value of the mean phase differences R = 1 Z &1, (1))

« MPC = abs(mean(exp(1i*(phase1-phase?)))); =1
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Dynamics of phase synchronisation over time

e Brainis a complex dynamic system and neural signals are non-stationary
e Synchronisation patterns change over time, even in short periods of time
 We need to estimate them for short time windows, e.g. few seconds.

« Segmentation of signals (moving window length and step of moving)

winLen = 4; % length of moving window for segmentation in second
stepLen = 0.5; % step of moving window in second
for i = 1:nSeg % loop for segmentation
idxSeg = floor((i-1)*stepLen*sampRate+1l):...
floor((i-1)*stepLen*sampRatet+winLen*sampRate) ;
MPC(i,nf) = abs(mean(exp(li*(phasel(idxSeg)-phase2(idxSeqg)))));
end
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Dynamics of phase synchronisation over time and frequency

« MPC can also be estimated in desired frequency bands

$ filter signals for frequency bands

order = round(3*(sampRate/freqBands(nf,1)));

firlCoef = firl(order,[freqBands(nf,1l),freqBands(nf,2)]./(sampRate/2));
filtSignall = filtfilt(firlCoef, 1, signall);

filtSignal2 = filtfilt(firlCoef, 1, signal2);

% extract instantaneous phase of signals using hilbert transform
phasel = angle(hilbert(filtSignall));
phase2 = angle(hilbert(filtSignal2));
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Phase synchronisation during epileptic seizure
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Histogram of phase differences in 3 conditions

[sortMPC,idxSort] = sort(MPC(:,idxFreq), 'ascend');
idx(1l) = idxSort(l); % lowest MPC
idx(2) = idxSort(floor(length(idxSort)/2)); % middle MPC

idx(3) = idxSort(end); % highest MPC
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Cross-frequency coupling
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Ditferent principles of cross-frequency interactions

« Quantification of interaction between different frequency bands of a signal is

called cross-frequency coupling

N~ N\

(a) Power of the gamma oscillations are Power
correlated with power in the lower to
frequency band. power /
(b) In each slow cycle, there are four faster Phase
cycles and their phase relationship to
remains fixed. phase
(c) The frequency of the fast oscillations is Phase
modulated by the phase of the slower to
oscillations. frequency
(d) The power of the gamma oscillations is Phase
modulated by the phase of the theta to
oscillations. power
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Phase-amplitude theta-gamma CFC

* A good example of phase-amplitude cross-frequency coupling is modulation
of gamma activities by phase of theta oscillations in rodent hippocampus

Gamma (60-80 Hz)

Theta (5-9 Hz)

LFP

100 ms
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Phase-amplitude CFC and working memory

« Coupling level depends on working memory load in human hippocampus
* Modulation frequency depends on working memory load in human hippocampus

e The frequency of modulating theta oscillations shifts toward lower frequencies with
iIncreasing memory load.
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Correlation between CFC and learning performance

 Phase-amplitude CFC strength is the most predictive neurophysiological
marker of learning yet found.

Learning task in rodent - Hippocampal CA3 recordings (118 trials)
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Dynamic entrainment of low-frequency phase
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Measuring phase-amplitude coupling using Modulation
Index (M)
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Steps to calculate Modulation Index

« Filtering signal for slow (modulating) and fast (modulated) frequency bands

e Extracting envelope of fast oscillations and phase of slow oscillations

%% Define phase/amplitude frequency bands of interest
phaseFreq = [6 9]; % frequency band for phase (Hz)
ampFreq = [55 95]; % frequency band for amplitude (Hz)

$% Extract envelope for amplitude frequency band using Hilbert transform
order = round(3*(sampRate/ampFreq(l)));

firlCoef = firl(order,[ampFreq(l),ampFreq(2)]./(sampRate/2));

ampSignal = filtfilt(firlCoef, 1, signal);

Amp = abs(hilbert(ampSignal));

$% Extract phase for phase frequency band using Hilbert transform
order = round(3*(sampRate/phaseFreq(l)));
firlCoef = firl(order, [phaseFreq(l),phaseFreq(2)]./(sampRate/2));
phaseSignal = filtfilt(firlCoef, 1, signal);
Phase = angle(hilbert(phaseSignal));
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Steps to calculate Modulation Index

* Divide phase of slow oscillations into several bins

$% Dividing phase [0 2*pi] into several equal bins
nBin = 18; % 18 bins, each bin covers 20 degrees
binStart = zeros(1l, nBin);
binSize = 2*pi/nBin;
for i = 1l:nBin

binStart(i) = (i-1)*binSize-pi; % start of each bin
end
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Steps to calculate Modulation Index

« Calculate average power of fast oscillations within each bin to construct
phase-power histogram

« Compare it with a uniform distribution using Kullback-Leibler distance

%% Compute Modulation Index
meanAmp = zeros(l,nBin); % Mean power in each phase-bin
for k = 1:nBin
meanAmp (k) = nanmean(Amp(Phase>=binStart(k) & Phase<(binStart(k)+binSize)));
end
meanAmp = meanAmp./sum(meanAmp); % normalize phase-amplitude histogram
KLdist = meanAmp.*log(nBin.*meanAmp); % Kullback-Leibler distance
KLdist (isnan(KLdist)) = 0;
MI = sum(KLdist)./log(nBin); % Normalize KL distance by log(nBin)
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Phase-amplitude CFC
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Phase-amplitude CFC over time

oo

winLen = 5; length of moving window for segmentation in second
stepLen = 1; % step of moving window in second

22

3% Compute Modulation Index for each segment
nSeg = floor(length(Phase)/(stepLen*sampRate))-ceil((winLen-stepLen)/stepLen); % number of segments
MI = zeros(1l, nSeqg);
meanAmp = zeros(nSeg, nBin);
for j = 1:nSeg
idx = (j-1)*stepLen*sampRate+l:((j-1)*stepLent+winLen)*sampRate; % index of segment
AmpT = Amp(1l,idx);
PhaseT = Phase(1l,idx);
meanAmpT = zeros(l,nBin); % Mean power in each phase-bin
for k = 1:nBin
meanAmpT (k) = nanmean(AmpT(PhaseT>=binStart(k) & PhaseT<(binStart(k)+binSize)));
end
meanAmpT = meanAmpT./sum(meanAmpT) ;
KLdist = meanAmpT.*log(nBin.*meanAmpT);
KLdist(isnan(KLdist)) = 0;
MI(1l,j) = sum(KLdist)./log(nBin);
meanAmp(j,:) = meanAmpT; _0.015
end = 0.01
0.005
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Comodulogram analysis

« Comodulogram analysis is a data-driven approach to explore coupling across
different pairs of frequency bands.

 Modulation Index is calculated for frequency pairs of interest to obtain
comodulogram graph.
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Comodulogram analysis - MATLAB

 Modulation Index is calculated for each pair of low and high frequency
oscillations

%% Comodulogram analysis
stPh = 0.5:17.5;

edPh = stPh+1;

phaseFreq = [stPh' edPh'];

stA = 10:10:240;
edA = stA+10;
ampFreq = [stA' edA'];

[comod, meanAmp] = f comodulogram(signal, sampRate, phaseFreq, ampFreq);

comodulogram phase-amplitude histogram phase-amplitude histogram
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2010.
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