Functional networks

Frédéric Zubler

Benesco 18.12.2015 A graph is an ordered pair (V,E), where

- V is a set of elements called vertices or nodes
- E is a set of pairs (a,b) with a, $b \in V$ called **edges** or **links** or **connections**.

Definition of a graph

A graph is an ordered pair (V,E), where

- V is a set of elements called vertices or nodes
- E is a set of pairs (a,b) with a, $b \in V$ called **edges** or **links** or **connections**.

Example

G = (V,E) with

- V = {1, 2, 3, 4}

 $- E = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$

Definition of a graph

A graph is an ordered pair (V,E), where

- V is a set of elements called vertices or nodes
- E is a set of pairs (a,b) with a, $b \in V$ called **edges** or **links** or **connections**.

Example

G = (V,E) with $- V = \{1, 2, 3, 4\}$ $- E = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$

Some definitions

A graph is **directed** (or **oriented**) if E is a set of *ordered* pairs

i.e. (a,b) ≠ (b,a).

Some definitions

A graph is **directed** (or **oriented**) if E is a set of *ordered* pairs

i.e. $(a,b) \neq (b,a)$.

A graph is **weighted** if a label (weight) is associated with each edge.

Some definitions

A graph is **directed** (or **oriented**) if E is a set of *ordered* pairs

i.e. $(a,b) \neq (b,a)$.

A graph is **weighted** if a label (weight) is associated with each edge.

A graph is **connected** if there is a path from any node to any other node.

Representation with a matrix

The **adjacency matrix** of a graph G is a square matrix A such that

A[i,j] is the weight of the edge from vertex i to vertex j

from

to						
0	1	1	0			
1	0	0	0			
0	1	0	0			
1	0	1	1			

0	2	15	6
2	0	0.5	2
15	0.5	0	0
6	2	1	0

Identifying important nodes

Degree centrality

Eigenvector centrality

Betweenness centrality

wikipedia

JULES HENRI POINCARE (1854-1912)

spikedmath.com

2 types of graphs in Neuroscience

structural networks :

nodes = brain areas, neurons, ... links = anatomical connections

functional networks :

nodes = signals (EEG, fMRI,...) links = mathematical relation between signals

Bullmore & Sporns, 2009

Cross-correlation function:

$$x = (x_1, x_2, ..., x_N)$$

 $y = (y_1, y_2, ..., y_N)$

$$C(x,y) = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - m_x)}{\sigma_x} \frac{(y_i - m_y)}{\sigma_y}$$

Cross-correlation function:

$$x = (x_1, x_2, ..., x_N)$$

 $y = (y_1, y_2, ..., y_N)$

$$C(x,y) = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - m_x)}{\sigma_x} \frac{(y_i - m_y)}{\sigma_y}$$

$$C = crosscoef(A);$$

% 5 signals s1 = rand(1000,1); s2 = 0.1 * s1; s3 = s1 + rand(1000,1); s4 = rand(1000,1); s5 = s1 + 0.4*s4;

% compute correlation

$$\label{eq:corrcoef} \begin{split} & C = corrcoef([s1,s2,s3,s4,s5]); \\ & C = abs(C); \end{split}$$

% plot imagesc(C);

First test in Matlab

% 5 signals

s1 = rand(1000,1); s2 = 0.1 * s1; s3 = s1 + rand(1000,1); s4 = rand(1000,1); s5 = s1 + 0.4*s2;

% compute correlation

$$\label{eq:corrcoef} \begin{split} & C = corrcoef([s1,s2,s3,s4,s5]); \\ & C = abs(C); \end{split}$$

% plot imagesc(C);

1	1	0.71	0.03	0.93
1	1	0.71	0.03	0.93
0.71	0.71	1	0.05	0.66
0.03	0.03	0.05	1	0.34
0.93	0.93	0.66	0.34	1

Coalescence and Fragmentation of Cortical Networks during Focal Seizures

Mark A. Kramer¹, Uri T. Eden¹, Eric D. Kolaczyk¹, Rodrigo Zepeda², Emad N. Eskandar^{3,4}, and Sydney S. Cash^{2,4}

+ Show Affiliations

The Journal of Neuroscience, 28 July 2010, 30(30): 10076-10085; doi: 10.1523/JNEUROSCI.6309-09.2010

Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG

Kaspar Schindler,¹ Howan Leung,¹ Christian E. Elger¹ and Klaus Lehnertz^{1,2}

Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG

Kaspar Schindler,¹ Howan Leung,¹ Christian E. Elger¹ and Klaus Lehnertz^{1,2}

Eigenvectors of the correlation matrix

% 2 mini clusters and one isolated signal s1 = rand(1000,1); s2 = 5*s1 + rand(1000,1); s3 = s1 + s2; s4 = rand(1000,1); s5 = 4*s4+rand(1000,1);

s6 = rand(1000,1);

```
% compute correlation matrix
C = corrcoef( [s1,s2,s3,s4,s5,s6] );
C = abs(C);
```

```
% compute and sort eigenvectors
lambda = eig(C);
lambda= abs(lambda);
lambda= sort(lambda);
```

% PLOT

subplot(2,1,1); imagesc(C); colormap(bone); caxis([0,1]) subplot(2,1,2); bar(lambda); xlim([0,7])

<u>Exercise</u>

iEEG data, 3 epochs of 2 secs at 500Hz (=1000 sampling points) for each epoch:

- a) compute correlation matrix.
- b) find the channel with highest degree centrality.
- c) find the 10 channels which are the most correlated with it.
- d) compute the ratio 5 largest / 60 smallest eigenvalues.

eeg_post.mat