
Chapter 2

From Fourier Transform to Wavelet
Transform: A Historical Perspective

To ensure safe and economical operation and product quality, manufacturing

machines and processes are constantly monitored and evaluated for their working

conditions, on the basis of signals collected by sensors, which are generally

presented in the form of time series (e.g., time-dependent variation of vibration,

pressure, temperature, etc.). To extract information from such signals and reveal the

underlying dynamics that corresponds to the signals, proper signal processing

technique is needed. Typically, the process of signal processing transforms a

time-domain signal into another domain, with the purpose of extracting the charac-

teristic information embedded within the time series that is otherwise not readily

observable in its original form. Mathematically, this can be achieved by represent-

ing the time-domain signal as a series of coefficients, based on a comparison

between the signal xðtÞ and a set of known, template functions fcnðtÞgn2z as

(Chui 1992; Qian 2002)

cn ¼
Z 1

�1
xðtÞc�

nðtÞdt (2.1)

where (·)* stands for the complex conjugate of the function (·). The inner product

between the two functions xðtÞ and cnðtÞ is defined as

hx;cni ¼
Z

xðtÞc�
nðtÞdt (2.2)

Then (2.1) can be expressed in the general form as

cn ¼ hx;cni (2.3)

The inner product in (2.3), in essence, describes an operation of comparing the

“similarity” between the signal xðtÞ and the template function fcnðtÞgn2z, that is,
the degree of closeness between the two functions. The more similar xðtÞ is to cnðtÞ,
the larger the inner product cn will be. On the basis of this notion, this chapter

presents a historical perspective on the evolution of the wavelet transform. This is

realized by observing the similarities as well as differences between the wavelet
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transform and other commonly used techniques, in terms of the choice of the

template functions fcnðtÞgn2z. To illustrate the point, a nonstationary signal

as shown in Fig. 2.1 is used as an example. The signal consists of four groups

of impulsive signal trains, each containing two transient elements of different

center frequencies at 1,500 and 650 Hz, respectively. The four groups are separated

from one another by a 12-ms time interval. Within each group, the two transient

elements are time-overlapped. The sampling frequency used to capture the signal

is 10 kHz.

2.1 Fourier Transform

The Fourier transform is probably the most widely applied signal processing tool

in science and engineering. It reveals the frequency composition of a time series

xðtÞ by transforming it from the time domain into the frequency domain. In 1807,

the French mathematician Joseph Fourier (Fig. 2.2) found that any periodic signal

can be presented by a weighted sum of a series of sine and cosine functions.

However, because of the uncompromising objections from some of his contempor-

aries such as J. L. Lagrange (Herivel 1975), his paper on this finding never

got published, until some 15 years later, when Fourier wrote his own book, The
Analytical Theory of Heat (Fourier 1822). In that book, Fourier extended his

finding to aperiodic signals, stating that an aperiodic signal can be represented by

a weighted integral of a series of sine and cosine functions. Such an integral is

termed the Fourier transform.

Using the notation of inner product, the Fourier transform of a signal xðtÞ can be
expressed as

Xð f Þ ¼ hx; ei2pfti ¼
Z 1

�1
xðtÞe�i2pft dt (2.4)
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Fig. 2.1 A nonstationary signal x(t)
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Assuming that the signal has finite energy,

Z 1

�1
jxðtÞj2dt<1

Accordingly, the inverse Fourier transform of the signal xðtÞ can be expressed as

xðtÞ ¼
Z 1

�1
Xð f Þei2pft df (2.5)

Signals obtained experimentally through a data acquisition system are generally

sampled at discrete time intervals DT, instead of continuously, within a total

measurement time T. Such a signal, defined as xk, can be transformed into the

frequency domain by using the discrete Fourier transform (DFT), defined as

DFTðfnÞ ¼ 1

N

XN�1

k¼0

xke
�i2pfnkDT (2.6)

where N ¼ T=DT is the number of samples, and fn ¼ n=T; n ¼ 0; 1; 2; . . . ;N � 1

are the discrete frequency components. The inverse DFT can then be expressed as

xk ¼ 1

DT

XðN�1Þ=T

fn¼0

DFTð fnÞei2pfnkDT (2.7)

Equations (2.4) and (2.6) indicate that the Fourier transform is essentially a

convolution between the time series xðtÞ or xk and a series of sine and cosine

functions that can be viewed as template functions. The operation measures the

similarity between xðtÞ or xk and the template functions, and expresses the average

frequency information during the entire period of the signal analyzed. In Fig. 2.3,

such an operation is graphically illustrated.

“An arbitrary function,

continuous or with

discontinuities, defined in a finite 

interval by an arbitrarily

capricious graph can always be 

expressed as a sum of sinusoids”

J.B.J. Fourier

Fig. 2.2 Jean B. Joseph Fourier (1768–1830)
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To compute the DFT of a signal with N samples, multiplication of an N � N
matrix that contains the primitive nth root of unity e�i2p=N by the signal is needed.

Such an operation takes a total of arithmetic operations on the order of N2 to

complete. The computational time increases quickly as the number of the samples

increases. For example, a time series of N ¼ 256 (i.e., 28) samples takes 65,536

operational steps to complete, whereas for N ¼ 4,096 (i.e., 212), a total of

16,777,216 steps will be needed to compute its DFT. The high computational

cost limited the widespread application of the DFT in its early stage, until a more

efficient algorithm, called the Cooley–Tukey algorithm, was introduced in 1965

(Cooley and Tukey 1965). This algorithm is also called the fast Fourier transform

(FFT), and what it does is to recursively break down a DFT of a large data sample

(i.e., a large N) into a series of smaller DFTs of smaller samples by dividing the

transform with size N into two pieces of size N/2 at each step, and reduce the

arithmetic operations to a total of N logðNÞ. Comparing to the N2 operations

required for DFT, this represents a time reduction of up to 96%, when, for example,

the data sample number N is 256.

In practice, the phenomena of leakage and aliasing can happen during the

calculation of DFT (Körner 1988). Leakage is caused by the discontinuities

involved when a signal is extended periodically for performing the DFT. Applying

a window to the signal to force it to contain a full period can prevent leakage from

happening. However, the window itself may contribute frequency information to

the signal. Aliasing occurs when the Shannon’s sampling theorem is violated,

(Bracewell 1999) causing the actual frequency component to appear at different

locations in the frequency spectrum. This can be solved by ensuring the sampling

frequency to be at least twice as large as the maximum frequency component

contained in the signal (Bracewell 1999). This requires, however, that the maxi-

mum frequency component is known a priori.

The Fourier transform of the signal shown in Fig. 2.1 is illustrated in Fig. 2.4.

The figure shows two major frequency peaks at 650 and 1,500 Hz, respectively.
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Fig. 2.3 Illustration of the Fourier transform of a continuous signal x(t)
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However, it does not reveal how the signal’s frequency contents vary with time;

that is, the figure does not reveal if the two frequency components are continuously

present throughout the time of observation or only at certain intervals, as is

implicitly shown in the time-domain representation. Because the temporal structure

of the signal is not revealed, the merit of the Fourier transform is limited; specifi-

cally, it is not suited for analyzing nonstationary signals. On the other hand, as

signals encountered in manufacturing are generally nonstationary in nature (e.g.,

subtle, time-localized changes caused by structural defects are typically seen in

vibration signals measured from rotary machines), a new signal processing tech-

nique that is able to handle the nonstationarity of a signal is needed.

2.2 Short-Time Fourier Transform

A straightforward solution to overcoming the limitations of the Fourier transform is

to introduce an analysis window of certain length that glides through the signal

along the time axis to perform a “time-localized” Fourier transform. Such a concept

led to the short-time Fourier transform (STFT), introduced by Dennis Gabor

(Fig. 2.5) in his paper titled “Theory of communication,” published in 1946

(Gabor 1946).

As shown in Fig. 2.6, the STFT employs a sliding window function g(t)
that is centered at time t. For each specific t, a time-localized Fourier transform

is performed on the signal x(t) within the window. Subsequently, the window

is moved by t along the time line, and another Fourier transform is performed.

Through such consecutive operations, Fourier transform of the entire signal can

be performed. The signal segment within the window function is assumed to

be approximately stationary. As a result, the STFT decomposes a time domain

signal into a 2D time-frequency representation, and variations of the frequency

content of that signal within the window function are revealed, as illustrated in

Fig. 2.6.
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Fig. 2.4 Fourier transform results of the signal x(t)
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Using the inner product notation as before, the STFT can be expressed as

STFTðt; f Þ ¼ hx; gt; f i ¼
Z

xðtÞg�t; f ðtÞdt ¼
Z

xðtÞgðt� tÞe�j2pft dt (2.8)

Equation (2.8) can also be viewed as a measure of “similarity” between the signal

xðtÞ and the time-shifted and frequency-modulated window function gðtÞ. Over the
past few decades, various types of window functions have been developed (Oppen-

heim et al. 1999), and each of them is specifically tailored toward a particular type

of application. For example, the Gaussian window designed for analyzing transient

signals, and the Hamming and Hann windows are applicable to narrowband,

random signals, and the Kaiser-Bessel window is better suited for separating two

signal components with frequencies very close to each other but with widely

differing amplitudes. It should be noted that the choice of the window function
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Fig. 2.6 Illustration of short-time Fourier transform on the test signal x(t)

Fig. 2.5 Dennis Gabor

(1900–1979)
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directly affects the time and frequency resolutions of the analysis result. While

higher resolution in general provides better separation of the constituent compo-

nents within a signal, the time and frequency resolutions of the STFT technique

cannot be chosen arbitrarily at the same time, according to the uncertainty principle

(Cohen 1989). Specifically, the product of the time and frequency resolutions is

lower bounded by

Dt � Df � 1

4p
(2.9)

where Dt and Df denote the time and frequency resolutions, respectively. Analyti-

cally, the time resolution Dt is measured by the root-mean-square time width of the

window function, defined as

Dt2 ¼
R
t2jgðtÞj2dtR jgðtÞj2dt (2.10)

Similarly, the frequency resolution Df is measured by the root-mean-square band-

width of the window function, and is defined as (Rioul and Vetterli 1991)

Df 2 ¼
R
f 2jGðf Þj2 dfR jGðf Þj2 df

(2.11)

In (2.11), Gðf Þ is the Fourier transform of the window function g(t). As

an example, the Gaussian window function gðtÞ ¼ e�at2t2 (with a being a constant

and t controlling the window width) has the time and frequency resolutions of

Dt ¼ t=ð2 ffiffiffi
a

p Þ and Df ¼ ffiffiffi
a

p
=ðt � 2pÞ, respectively. As a result, the time-frequency

resolution provided by the Gaussian window when analyzing a signal x(t)
is Dt � Df ¼ 1=4p. As the time and frequency resolutions of a window function

are dependent on the parameter t only, once the window function is chosen,

the time and frequency resolutions over the entire time-frequency plane are

fixed. Illustrated in Fig. 2.7 are two scenarios where the products of the time and

frequency resolutions of the window function (i.e., the area defined by the

product of Dt � Df ) are the same, regardless of the actual window size (t or t=2 )

employed.

The effect of the window size t on the time and frequency resolutions is

illustrated in Fig. 2.8, where STFT with the Gaussian window was performed

on the signal shown in Fig. 2.1. Altogether three different window sizes (i.e., 1.6,

6.4, and 25.6 ms) were chosen. While the smallest window width of 1.6 ms

has provided high time resolution in separating the four pulse trains contained

in the signal, as illustrated in Fig. 2.8a, its frequency resolution was too low

to differentiate the two time-overlapped transient elements within each group.

As a result, the frequency elements 1,500 and 650 Hz are displayed as one

lumped group on the time-frequency plane. In contrast, the largest window width
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of 25.6 ms provided good frequency resolution to illustrate the two frequency

components in Fig. 2.8b. However, the time-resolution was insufficient to differen-

tiate the four pulse trains that are timely separated with a 12-ms interval. The

best overall performance is given by the window width of 6.4 ms, shown in

Fig. 2.8c, which allowed for all of the transients to be adequately differentiated

on the time-frequency plane. Given that the specific frequency content of an
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Fig. 2.7 Time-frequency resolutions associated with the STFT technique. (a) Window size t and
(b) window size t/2
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experimentally measured signal is generally not known a priori, selection of

a suitable window size for effective signal decomposition using the STFT technique

is not guaranteed. The inherent drawback of the STFT motivates researchers

to look for other techniques that are better suited for processing nonstationary

signals. One of such techniques, which is the focus of this book, is the wavelet

transform.

Fig. 2.8 Results of the STFT

of the signal using three

different window sizes.

(a) Window size 1.6 ms,

(b) window size 25.6 ms, and

(c) window size 6.4 ms
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2.3 Wavelet Transform

From a historical point of view, the first reference to the wavelet goes back to

the early twentieth century when Alfred Haar (Fig. 2.9) wrote his dissertation titled

“On the theory of the orthogonal function systems” in 1909 to obtain his doctoral

degree at the University of Göttingen. His research on orthogonal systems of

functions led to the development of a set of rectangular basis functions (Haar

1910), as illustrated in Fig. 2.10. Later, an entire wavelet family, the Haar wavelet,

was named on the basis of this set of functions, and it is also the simplest wavelet

family developed till this date.

Essentially, Haar’s basis function consists of a short positive pulse followed by

a short negative pulse, and it was used to illustrate a countable orthonormal system

for the space of square-integrable functions on the real line (Haar 1910). Later, the

Haar basis function was applied to compress images (DeVore et al. 1992).

Little advancement in the field of wavelets was reported after Haar’s work, until

a physicist, Paul Levy (Fig. 2.11), investigated the Brownian motion in the 1930s.

He discovered that the scale-varying function, that is, the Haar basis function,

was better suited than the Fourier basis functions for studying subtle details in

the Brownian motion. In addition, the Haar basis function can be scaled into

different intervals, such as the interval [0, 1] or the intervals [0, 1/2] and [1/2, 1],

thereby providing higher precision when modeling a function than that provided by

the Fourier basis function, as it can only have one interval [–1, –1].

Fig. 2.9 Alfred Haar

(1885–1933)
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While several individuals, such as John Littlewood, Richard Paley (Littlewood

and Paley 1931), Elias M. Stein (Jaffard et al. 2001), and Norman H. Ricker

(Ricker 1953) have contributed, from the 1930s to the 1970s, to advancing

the state of research in wavelets as it is called today, major advancement in the

field was attributed to Jean Morlet (Fig. 2.12) who developed and implemented

the technique of scaling and shifting of the analysis window functions in analyz-

ing acoustic echoes while working for an oil company in the mid 1970s (Mackenzie

2001). By sending acoustic impulses into the ground and analyzing the

received echoes, the existence of oil beneath the earth crust as well as the thickness

of the oil layer can be identified. When Morlet first used the STFT to analyze

these echoes, he found that keeping the width of the window function fixed

did not work. As a solution to the problem, he experimented with keeping

the frequency of the window function constant while changing the width of the

window by stretching or squeezing the window function (Mackenzie 2001). The

resulting waveforms of varying widths were called by Morlet the “Wavelet”, and

this marked the beginning of the era of wavelet research. As a matter of fact,

the approach that Morlet used was similar to what Haar did before, but the

theoretical formation of the wavelet transform was first proposed only after

Jean Morlet teamed up with Alex Grossmann to work out the idea that a signal

could be transformed into the form of a wavelet and then transformed back into its

original form without any information loss (Grossmann and Morlet 1984).

Fig. 2.11 Paul Levy

(1886–1971)

Fig. 2.12 Jean Morlet

(1931–2007)
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In contrast to the STFT technique where the window size is fixed, the wavelet

transform enables variable window sizes in analyzing different frequency compo-

nents within a signal (Mallat 1998). This is realized by comparing the signal with a

set of template functions obtained from the scaling (i.e., dilation and contraction)

and shift (i.e., translation along the time axis) of a base wavelet cðtÞ and looking for
their similarities, as illustrated in Fig. 2.13.

Using again the notation of inner product, the wavelet transform of a signal x(t)
can be expressed as

wtðs; tÞ ¼ hx;cs;ti ¼
1ffiffi
s

p
Z 1

�1
xðtÞc� t� t

s

� �
dt (2.12)

where the symbol s> 0 represents the scaling parameter, which determines the time

and frequency resolutions of the scaled base wavelet cðt� t=sÞ. The specific values
of s are inversely proportional to the frequency. The symbol t is the shifting

parameter, which translates the scaled wavelet along the time axis. The symbol

c�ð�Þ denotes the complex conjugation of the base wavelet c(t). As an example,

if the Morlet wavelet cðtÞ ¼ ei2pf0t e�ðat2=b2Þ is chosen as the base wavelet, its scaled
version will be expressed as

c
t� t
s

� �
¼ ei2pf0

t�t
s e

�aðt�tÞ2
s2b2 (2.13)
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Fig. 2.13 Illustration of wavelet transform
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with the parameters f0, a, and b all being constants. The corresponding time and

frequency resolutions of the Morlet wavelet will be calculated as Dt ¼ sb=2
ffiffiffi
a

p
and

Df ¼ ffiffiffi
a

p
=ðs � 2pbÞ, respectively. These expressions indicate that the time and

frequency resolutions are directly and inversely proportional to the scaling param-

eter s, respectively. In Fig. 2.14, variations of the time and frequency resolutions of

the Morlet wavelet at two locations on the time–frequency (t–f) plane, ðt1; �=s1Þ
and ðt2; �=s2Þ, are illustrated.

It is seen that changing the scale from s at the location ðt1; �=s1Þ to s2 ¼ 2s1 at
ðt2; �=s2Þ decreases the time resolution by half (as the width of the time window is

doubled) while doubling the frequency resolution (because the width of the fre-

quency window is reduced to half). Through variations of the scale s and time shifts

(by t) of the base wavelet function, the wavelet transform is capable of extracting

the constituent components within a time series over its entire spectrum, by using

small scales (corresponding to higher frequencies) for decomposing high frequency

components and large scales (corresponding to lower frequencies) for low fre-

quency components analysis. As an example, Fig. 2.15 illustrates the result of the

wavelet transform performed on the signal shown in Fig. 2.1, using the Morlet base

wavelet. It is evident that all the transient components are differentiated in the time

scale domain.

Following up the impactful work of Morlet and Grossmann, numerous

researchers have invested significant effort in further developing the theory of

wavelet transform. Examples include Strömberg’s early work on discrete wavelets

in 1983 (Strömberg 1983), Grossmann, Morlet, and Paul’s work on analyzing

arbitrary signals in terms of scales and translations of a single base wavelet function

(Grossmann et al. 1985, 1986), and Newman’s work on Harmonic wavelet trans-

form in 1993 (Newland 1993). Perhaps the most important step that has led to the

prosperity of the wavelets was the invention of multiresolution analysis by
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Stephane Mallat (Fig. 2.16) (Mallat 1989a, b, 1999) and Yves Meyer (Fig. 2.17)

(Meyer 1989, 1993). Such an invention was introduced by a paper written by Meyer

on orthogonal wavelets, entitled “Orthonormal wavelets” (Meyer 1989).

The key to multiresolution analysis is to design the scaling function of the

wavelet such that it allowed other researchers to construct their own base wavelets

in a mathematically grounded fashion. As an example, Ingrid Daubechies

(Fig. 2.18) created her own family of wavelet, the Daubechies wavelets, around

1988 (Daubechies 1988, 1992), on the basis of the concept of multiresolution.

Figure 2.19 illustrates one member of the Daubechies wavelet family: Daubechies

2 base wavelet. This type of wavelet is orthogonal and can be implemented using

simple digital filtering techniques.

Since then, a proliferation of activities on wavelet transform and its applications

in many fields has been seen. These include image processing, speech processing,

as well as signal analysis in manufacturing which is the focus of this book.

Fig. 2.15 Wavelet transform of the signal

Fig. 2.16 Stephane Mallat
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