
E E 2 7 5 Lab June 30, 2006

Lab 2. Spectral Analysis in Matlab

Introduction

This lab will briefly describe the following topics:
• Signal statistics
• Discrete Fourier Transform
• Power Spectral Density estimation
• Time-varying spectra
• Wavelets

There are a number of important statistical signal processing concepts in this Lab. We will
fully appreciate some of them as we proceed in class. You can certainly read about them in
this Lab, but do not have to do the simulations. (Some functions are missing).

For this Lab. do the simulations up to Q2 on page 3. Then go to “Lab 19 The Fast Fourier
Transform” and do that Lab.

For your report, you need to answer Q1, Q2 and the 7 questions on page 3 of Lab.19.

Statistical Signal Processing

Repeated measurements of a signal x under identical environmental conditions typically yield
different waveforms. The value x(n) of a signal at sample n is not a constant, but rather a
random variable with a certain distribution.

A signal is stationary if its distribution at any n is independent of time shifts, i.e., if x(n) and
x(n + N) have the same distribution for every integer N . Stationary signals are associated
with steady states in the system producing the signal, and are characterized by constant
averages and variances along the signal. When statistics computed along any instance of a
signal are identical to those computed across ensembles of different instances of the signal,
the system is ergodic. Ergodicity is assumed in most practical situations.

Matlab has functions for computing the mean (mean), variance (var), standard deviation
(std), covariance (cov), and correlation coefficient (corrcoeff) of signal values sampled across
time or across ensembles. The Statistics Toolbox provides many additional statistical func-
tions.

The Signal Processing Toolbox provides a crosscorrelation function (xcorr) and a crossco-

1



variance function (xcov). Crosscorrelation of two signals is equivalent to the convolution of
the two signals with one of them reversed in time. The xcorr function adds several options
to the standard Matlab conv function. The xcov function simply subtracts the mean of the
inputs before computing the crosscorrelation. The crosscorrelation of a signal with itself is
called its autocorrelation. It measures the coherence of a signal with respect to time shifts.

c©2006GM

Try:

x = randn(1,100);

w = 10;

y = conv(ones(1,w)/w,x);

avgs = y(10:99);

plot(avgs)

Ensemble averages:
w = 10;

for i = 1:w;

X(i,:) = randn(1,100);

end

AVGS = mean(X);

plot(AVGS)

x = [-1 0 1];

y = [0 1 2];

xcorr(x,y)

conv(x,fliplr(y))

xcov(x,y)

xcov(x,x)

xcov(x,y-1)

Q1: What do you notice about these vectors?
Explain why you see these results.

Example: Crosscorrelation

In a simple target ranging system, an outgoing signal x is compared with a returning signal
y. We can model y by

y(n) = αx(n− d) + β

2



where α is an attenuation factor, d is a time delay, and β is channel noise. If T is the return
time for the signal, then x and y should be correlated at n = T . The target will be located
at a distance of vT , where v is the channel speed of the signal.

Try:

x = [zeros(1,25),1,zeros(1,25)];

subplot(311), stem(x)

y = 0.75*[zeros(1,20),x] + 0.1*randn(1,71);

subplot(312), stem(y)

[c lags] = xcorr(x,y);

subplot(313), stem(lags,c)

Q2: Does this example show the expected behavior?
Why or why not?

Discrete Fourier Transform (DFT)

It is often useful to deompose data into component frequencies. Spectral analysis gives an
alternative view of time or space-based data in the frequency domain. The computational
basis of spectral analysis is the discrete Fourier transform (DFT).

The DFT of a vector y of length n is another vector Y of length n:

Yk+1 =
n−1∑
j=0

ωjkyj+1

where ω is a complex nth root of unity:

ω = e−2πi/n

This notation uses i for the complex unit, and j and k for indices that run from 0 to n− 1.
The subscripts j +1 and k+1 run from 1 to n, corresponding to the range usually associated
with Matlab vectors.

Data in the vector y are assumed to be separated by a constant interval in time or space
dt = 1/Fs. Fs is called the sampling frequency of y. The coefficient Yk+1 measures the
amount of the frequency f = k(Fs/n) that is present in the data in y. The vector Y is
called the spectrum of y.

The midpoint of Y (or the point just to the right of the midpoint, if n is even), corresponding
to the frequency f = Fs/2, is called the Nyquist point. The real part of the DFT is symmetric
about the Nyquist point.

The graphical user interface fftgui allows you to explore properties of the DFT. If y is a
vector,

3



fftgui(y)

plots real(y), imag(y), real(fft(y)), and imag(fft(y)). You can use the mouse to move
any of the points in any of the plots, and the points in the other plots respond.

Try:

Roots of unity

edit z1roots

z1roots(3);

z1roots(7);

Explore the DFT:

delta1 = [1 zeros(1,11)];

fftgui(delta1)

delta2 = [0 1 zeros(1,10)];

fftgui(delta2)

deltaNyq = [zeros(1,6),1,zeros(1,5)];

fftgui(deltaNyq)

square = [zeros(1,4),ones(1,4),zeros(1,4)];

fftgui(square)

t = linspace(0,1,50);

periodic = sin(2*pi*t);

fftgui(periodic)

Fast Fourier Transform (FFT)

The Matlab function fft, called by fftgui, uses a fast Fourier transform algorithm to
compute the DFT.

DFTs with a million points are common in applications. For modern signal and image
processing applications, and many other applications of the DFT, the key is the ability to
do such computations rapidly. Direct application of the definition of the DFT requires n
multiplications and n additions for each of the n coefficients - a total of 2n2 floating-point
operations. This number does not include the generation of the powers of ω. To do a million-

4



point DFT, a computer capable of doing one multiplication and addition every microsecond
would require a million seconds, or about 11.5 days.

Modern FFT algorithms have computational complexity O(nlog2n) instead of O(n2). If n
is a power of 2, a one-dimensional FFT of length n requires less than 3nlog2n floating-point
operations. For n = 220, that’s a factor of almost 35,000 times faster than 2n2.

When using the FFT, a distinction is often made between a window length and an FFT
length. The window length is the length of the input. It might be determined by, say, the
size of an external buffer. The FFT length is the length of the output, the computed DFT.
The command

Y=fft(y)

returns the DFT Y of y. The window length length(y) and the FFT length length(Y) are
the same.

The command

Y=fft(y,n)

returns the DFT Y with length n. If the length of y is less than n, y is padded with trailing
zeros to length n. If the length of y is greater than n, the sequence y is truncated. The FFT
length is then the same as the padded/truncated version of the input y.

Try:

Vector data interpolation and the origins of the FFT

edit fftinterp

fftinterp

hold off

Note: Several people discovered fast DFT algorithms independently, and many people have since
joined in their development, but it was a 1965 paper by John Tukey of Princeton University and
John Cooley of IBM Research that is generally credited as the starting point for the modern usage of
the FFT. The Matlab fft function is based on FFTW, “The fastest Fourier Transform in the West”,
developed by MIT graduate students Matteo Frigo and Steven G. Johnson. (http://www.fftw.org)

Spectral Analysis with the FFT

The FFT allows you to estimate efficiently the component frequencies in data from a discrete
set of values sampled at a fixed rate. The following list shows the basic relationships among
the various quantities involved in any spectral analysis. References to time can be replaced
by references to space.

y Sampled data

5



n = length(y) Number of samples
Fs Samples/unit time
dt = 1/Fs Time increment
t = (0:n-1)/Fs Time range
Y = fft(y) Discrete Fourier Transform (DFT)
abs(Y) Amplitude of the DFT
abs(Y).^2/n Power of the DFT
Fs/n Frequency increment
f = (0:n-1)*(Fs/n) Frequency range
Fs/2 Nyquist frequency

A plot of the power spectrum is called a periodogram. The first half of the principal frequency
range (from 0 to the Nyquist frequency Fs/2 is sufficient, because the second half is a
reflection of the first half.

Spectra are sometimes plotted with a principal frequency range from−Fs/2 to Fs/2. Matlab
provides the function fftshift to rearrange the outputs of fft and convert to a 0-centered
spectrum.

Try:

Periodograms

edit pgrams

pgrams

Whale call
edit whalefft

whalefft

FFT Demos
sigdemo1

playshow fftdemo

phone

playshow sunspots

If you’re not familiar with DTMF, try the following with a touch-tone telephone. While
listening to the receiver, press two keys in the same row simultaneously, then press two keys
in the same column (e.g., 1 & 2, then 1 & 4).

6



Aliasing

Discrete time signals sampled from time-periodic analog signals need not be time periodic,
but they are always periodic in frequency, with a period equal to the sampling frequency.
The resulting harmonics show up as spectral copies in frequency domain plots like the pe-
riodogram. If the sampling rate is too low, these spectral copies can overlap within the
principal range, confusing the frequency analysis.

Power Spectral Density (PSD)

The power spectral density (PSD) of an analog signal y is a function of frequency, Ryy(f),
whose area equals the total signal power. Its units are, e.g., watts/hertz, and Ryy(f)∆f
approximates signal power over a small range of frequencies ∆f centered at f . The Wiener-
Khintchine theorem states that Ryy(f) is the DFT of the autocorrelation function ryy(t) of
y. The value Ryy(0) = ryy(0) gives the average power in the signal.

For signals sampled over a finite interval of time, the best we can do is estimate the PSD. This
result is because the spectra of finite sequences suffer from both poor resolution and leakage
(nonzero spectral components at frequencies othe than harmonics of y due to sampling over
noninteger multiples of the signal period).

PSD estimates of noisy analog signals from a finite number of its samples are based on three
fundamentally different approaches:

• Non-parametric methods
Make no assumptions about the data in the sample and work directly with the DFT.
Welch: pwelch
Multitaper: pmtm

• Parametric methods
Model the data in the sample as the output of a linear system excited by white noise (noise
with zero mean and constant PSD), estimate the filter coefficients, and use these to estimate
the PSD.
Burg: pburg
Yule-Walker: pyulear

• Subspace methods
Based on an eigenanalysis or eigendecomposition of the correlation matrx associated with
the data in the sample.
EV: peig
MUSIC: pmusic

7



Try:

Fs = 100;

t = 0:1/Fs:10;

y = sin(2*pi*15*t) + sin(2*pi*30*t);

nfft = 512;

Y = fft(y,nfft);

f = Fs*(0:nfft-1)/nfft;

Power = Y.*conj(Y)/nfft;

plot(f,Power)

title(’Periodogram’)

figure

ryy = xcorr(y,y);

Ryy = fft(ryy,512);

plot(f, abs(Ryy))

title(’DFT of Autocorrelation’)

Non-parametric Methods

Non-parametric methods estimate the PSD directly from the signal itself. The simplest such
method is the periodogram. An improved version of the periodogram is Welch’s method. A
more modern technique is the multitaper method (MTM).

The following functions estimate the PSD Pxx in units of power per radians per sample.
The corresponding vector of frequencies w is computed in radians per sample, and has the
same length as Pxx.

• Periodogram method

[Pxx w] = periodogram(x)

Estimates the PSD using a periodogram. Optional inputs specify windows (default is rect-
angular), FFT length, PSD sample frequencies, and output frequency range.

• Welch method

[Pxx w] = pwelch(x)

Estimates the PSD using Welch’s averaged periodogram method. The vector x is segmented
into equal-length sections with overlap. Trailing entries not included in the final segment
are discarded. Each segment is windowed. Optional inputs specify windows (default is
Hamming), overlap, FFT length, and PSD sample frequencies.

8



• Multitaper method

[Pxx w] = pmtm(x, nw)

Estimates the PSD using a sequence of 2∗nw−1 orthogonal tapers (windows in the frequency
domain). The quantity nw is the time-bandwidth product for the discrete prolate spheroidal
sequences specifying the tapers. Optional inputs specify taper frequencies, FFT length, and
PSD sample frequencies.

Try:

t = 0:1/100:10-1/100;

x = sin(2*pi*15*t) + sin(2*pi*30*t);

periodogram(x,[],512,100);

figure

pwelch(x,[],512,100);

figure

pmtm(x,[],512,100);

Comment on the three methods.
Is one preferable to the other two?
Why or why not?

Parametric Methods

Parametric methods can yield higher resolution than non-parametric methods in cases where
the signal length is short. These methods use a different approach to spectral estimation:
instead of estimating the PSD directly from the data, they model the data as the output of
a linear system driven by white noise (an adaptive filter), and then attempt to estimate the
parameters of that linear system.

The most commonly used linear system model is the all-pole model, a system with all of its
zeros at the origin in the z-plane. The output of such a system for white noise input is an
autoregressive (AR) process. These methods are sometimes referred to as AR methods.

AR methods give accurate spectra for data that is “peaky,” that is, data with a large PSD
at certain frequencies. The data in many practical applications (such as speech) tends to
have peaky spectra, so that AR models are often useful. In addition, the AR models lead to
a system of linear equations that is relatively simple to solve.

The following methods are summarized on the next page. The input p specifies the order of
the autoregressive (AR) prediction model.

• Yule-Walker AR method
[Pxx f] = pyulear(x,p,nfft,fs)

9



• Burg method
[Pxx f] = pburg(x,p,nfft,fs)

• Covariance and modified covariance methods
[Pxx f] = pcov(x,p,nfft,fs)

[Pxx f] = pmcov(x,p,nfft,fs)

Try:

edit pmethods

pmethods(’pyulear’,25,1024)

pmethods(’pburg’,25,1024)

pmethods(’pcov’,5,512)

pmethods(’pmcov’,5,512)

Some of the factors to consider when choosing among parametric methods are summarized
in the following table. See the documentation for further details.

Burg Covariance Modified Yule-Walker
Covariance

Characteristics

Does not apply Does not apply Does not apply Applies window
window to data window to data window to data to data

Minimizes forward Minimizes forward Minimizes forward Minimizes forward
and backward prediction error and backward prediction error

prediction errors prediction errors

Advantages

High resolution for Better resolution High resolution for As good as other
short data records than Y-W for short short data records methods for large

data records data records
Always produces Extract frequencies Extract frequencies Always produces
a stable model from mix of p or from mix of p or a stable model

more sinusoids more sinusoids
No spectral
line-splitting

Disadvantages

10



Peak locations Can produce Can produce Performs relatively
highly dependent unstable models unstable models poorly for short
on initial phase data records
Spectral line- Frequency bias Peak locations Frequency bias
splitting for for estimates of slightly dependent for estimates of

sinusoids in noise, sinusoids in noise on initial phase sinusiods in noise
or when order is

very large
Frequency bias for Minor frequency
sinusoids in noise bias for sinusiods

in noise

Conditions for Nonsingularity

p must be ≤ 1/2 p must be ≤ 2/3 Autocorrelation
input frame size input frame size matrix always

positive-definite,
nonsingular

Subspace Methods

Subspace methods, also known as high-resolution methods or super-resolution methods, gen-
erate PSD estimates based on an eigenanalysis or eigendecomposition of the correlation
matrix. These methods are best suited for line spectra - i.e., spectra of sinusoidal signals -
and are effective for detecting sinusoids buried in noise, especially when signal to noise ratios
are low.

The following functions estimate the pseudospectrum S (an indicateor of the presence of
sinusoidal components in a signal) of the input signal x, and a vector w of normalized
frequencies (in rad/sample) at which the pseudospectrum is evealuated. The input p controls
the dimensions of the signal and noise subspaces used by the algorithms.

• Eigenvector method
[S f] = peig(x,p,nfft,fs)

• Multiple Signal Classification (MUSIC) method
[S f] = pmusic(x,p,nfft,fs)

The MUSIC algorithm uses Schmidt’s eigenspace analysis method. The eigenvector uses a
weighted version of the MUSIC algorithm.

Try:

11



edit ssmethod

ssmethod(3)

ssmethod(4)

Spectrum Viewer in SPTool

The SPTool allows you to view and analyze spectra using different methods. To create a
spectrum in SPTool,

1. Select the signal in the Signals list in SPTool.
2. Select the Create button under the Spectra list.

Use the View button under the Spectra list in the SPTool GUI to display one or more
selected spectra.

Try:

t = 0:1/100:10-1/100;

x = sin(2*pi*15*t) + sin(2*pi*30*t);

Import this signal into SPTool and view the spectrum using various methods.

Time-Varying Spectra

The spectral estimation methods described so far are designed for the analysis of signals
with a constant spectrum over time. In order to find time-varying spectra, different methods
of analysis and visualization must be used.

The time-dependent Fourier transform of a signal is a sequence of DFTs computed using a
sliding window. A spectrogram is a plot of its magnitude versus time.

[B f t] = specgram(x,nfft,fs,window,numoverlap)

calculates the time-dependent Fourier transform for the signal in vector x and returns the
DFT values B, the frequency vectors f , and the time vectors t. The spectrogram is computed
as follows:

1. The signal is split into overlapping sections and applies to the window specified by the
window parameter to each section.

2. It computes the discrete-time Fourier transform of each section with a length nfft
FFT to produce an estimate of the short-term frequency content of the signal; these
transforms make up the columns of B. The quantity length(window) − numoverlap
specifies by how many samples specgram shifts the window.

12



3. For real input, specgram truncates to the first nfft/2 + 1 points for nfft even and
(nfft + 1)/2 for nfft odd.

When called with no outputs, specgram displays the spectrogram.

Try:

Time-constant spectrum

t = 0:1/100:10-1/100;

x = sin(2*pi*15*t) + sin(2*pi*30*t);

specgram(x,256,100,hann(21),15)

colorbar

Time-varying spectrum

load handel

sound(y,Fs)

specgram(y,512,Fs,kaiser(100,5),75)

colorbar

Spectrogram Demos

specgramdemo

xpsound

Example: Reduced Sampling Rate

This example compares the sound and spectrogram of a speech signal sampled at progres-
sively reduced rates.

If you resample a signal at a fraction of the original sampling frequency, part of the signal’s
original frequency content is lost. The down-sampled signal will contain only those frequen-
cies less than the new Nyquist frequency. As down-sampling continues, the words in the
signal remain recognizable long after the original spectrogram has become obscured. This is
a tribute to the human auditory system, and is the basis of signal compression algorithms
used in communications.

Try:

edit HAL9000

HAL9000

13



Wavelets

One of the drawbacks of the Fourier transform is that it captures frequency information
about a signal without any reference to time. For stationary signals this is unimportant, but
for time-varying or “bursty” signals, time can be critical to an analysis.

The time-dependent Fourier transform computed by the specgram function is one solution
to this problem. By applying a DFT to a sliding window in the time domain, specgram
captures a signal’s frequency content at different times. The disadvantage of this method
is that it is uniform on all time intervals: it does not adjust to local idiosyncrasies in the
frequency content. As a result, more subtle nonstationary characteristics of a signal can go
undetected.

Wavelet analysis uses a more adaptable method, and is capable of revealing trends, break-
down points, discontinuities in higher derivatives, and self-similarity that the DFT might
miss.

A wavelet is a waveform of effectively limited duration that has an average value of zero.

The discrete wavelet transform (DWT) computes coefficients of similarity between a signal
and a sliding wavelet. The coefficients are found with wavelets of different scales (widths
that approximate different frequencies) to analyze the signal at different resolutions. In a
wavelet analysis, a signal is iteratively decomposed into the sum of a lowpass approximation
and a progressive sequence of highpass details.

The Wavelet Toolbox adds wavelet analysis techniques to the signal processing techniques
available in the Signal Processing Toolbox.

wavemenu

brings up a menu for accessing graphical tools in the Wavelet Toolbox.

Try:

wavemenu

Select Wavelet 1-D
and then File → Example Analysis → Basic Signals → Frequency breakdown

S is the signal
a5 is the approximation
dn are the details

What is happening in this signal and how does the wavelet analysis show it?

(The material in this lab handout was put together by Paul Beliveau and derives principally from
the MathWorks training document “MATLAB for Signal Processing”, 2006.)

14



c©2006GM

15



Signal Processing First
Lab 19: The Fast Fourier Transform

Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment
and go over all exercises in the Pre-Lab section before going to your assigned lab session.

Verification: The Warm-up section of each lab must be completedduring your assigned Lab time and
the steps markedInstructor Verificationmust also be signed offduring the lab time. One of the laboratory
instructors must verify the appropriate steps by signing on theInstructor Verification line. When you have
completed a step that requires verification, simply demonstrate the step to the TA or instructor. Turn in the
completed verification sheet to your TA when you leave the lab.

Lab Report: It is only necessary to turn in a report on Section 4 with graphs and explanations. You are
asked tolabel the axes of your plots and include a title for every plot. In order to keep track of plots, include
your plot inlined within your report. If you are unsure about what is expected, ask the TA who will grade
your report.

1 Introduction & Objective

The goal of the laboratory project is to introduce the Fast Fourier Transform (FFT) algorithm for efficient
computer calculation of the Fourier transform and to investigate some of the Fourier Transform’s properties.

2 Background

2.1 The Fast Fourier Transform

Supposeg is an array ofN values representing the time signalg[n] = g(nTs). The MATLAB command

>> G = fft(g);

causes MATLAB to compute the discrete Fourier transform of the time signalg(nTs) and place the result in
arrayG. The arrayGrepresents a spectrumG(n∆f), also ofN values. Remember that MATLAB numbers
its array elements starting with one. This means thatg[0] is stored in array elementg(1) andg((N −1)Ts)
is stored ing(N) . Similarly, G(0) is stored in array elementG(1) andG((N − 1)∆f) is stored inG(N) .
For greatest computational efficiency,N should be a power of two. Ifg(nTs), n = 0, ..., N − 1 is a time
signal, the Fourier transform that MATLAB calculates is given by

G(k∆f) =
N−1∑
k=0

g(nTs)e−j2πkn/N , n = 0, ..., N − 1. (1)

Note thatTs represents the time between values ofg(kTs). It turns out that the frequency interval∆f
between values ofG(n∆f) is given by

∆f =
1

NTs

Given the arrayG, the MATLAB command

>> g = ifft(G);

McClellan, Schafer, and Yoder,Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458.c©2003 Pearson Education, Inc.

1



calculates the inverse Fourier transform given by

g(nTs) =
1
N

N−1∑
k=0

G(k∆f)e+j2πnk/N , k = 0, ..., N − 1. (2)

The Fourier transform given by equation 1 is called a discrete Fourier transform or DFT. MATLAB uses
the discrete transform because MATLAB cannot store continuous-time signals. MATLAB uses an efficient
algorithm called the Fast Fourier Transform (FFT) to calculate the discrete Fourier transform. The dis-
crete Fourier transform has properties that are similar to those of the familiar continuous Fourier transform.
There is one important difference. The spectrumG(k∆f) defined in equation 1 above is periodic in fre-
quency with periodfs = N∆f . This periodicity is a consequence of the discrete-time nature of the time
signalg(nTs). One period of the spectrum extends from frequency 0 to frequency(N − 1)∆f . The posi-
tive frequency components lie between frequency 0 and frequency(N

2 − 1)∆f . The spectral components
from frequencyN∆f/2 to (N − 1)∆f are repeats of the negative frequency components that lie between
frequencies−(N

2 )∆f and−∆f respectively. Because the spectrumG(k∆f) is defined only at discrete
values of frequency, the FFT algorithm considers the time functiong(nTs) to be periodic with periodNTs.
Consequently, theN -value arrayg you define will be interpreted as one period of an infinite-duration peri-
odic signal. The spectrumG(k∆f) defined in equation (1) is actually the Fourier transform of the periodic
signal.

2.2 Plotting the Spectrum

If G(k∆f) is plotted against frequency, zero hertz will appear on the left of the graph. The positive fre-
quency components will appear to the right of zero, followed farther to the right by the negative frequency
components. Because this is contrary to convention, MATLAB provides a function to rearrange the compo-
nents of the arrayGto place the negative frequency components to the left of zero. The command

>> H = fftshift(G);

will create an arrayH that represents a spectrumH(n∆f) whose DC component is in the center as expected.
Before plottingH (or G), recall that these arrays may contain complex numbers. The commandplot(H)
will cause MATLAB to plot the imaginary part against the real part. This usually gives an interesting graph,
but probably not the one you had in mind! You may obtain the magnitude spectrum by the commandM =
abs(H) , and the angle spectrum bya = angle(H) . You may also want to use the commandsreal()
andimag() to find the real and imaginary parts of the signals you are examining. Tip: ifH is real, plot it.
If H is complex, plotabs(H) andangle(H) .

3 Pre-Lab

Sketch the Fourier Transform for each of the signals given in the procedure. Record them in your lab
notebook and bring a photocopy of your notebook to the lecture before lab.

4 Lab Exercises

Because of the requirement that the number of samples be a power of two, we will let all of the time signals
in this lab project consist ofN = 512 samples having a total duration of500µs. (What does this makeTs?
What is∆f?) You can generate a time axis and a frequency axis for your graphs by

McClellan, Schafer, and Yoder,Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458.c©2003 Pearson Education, Inc.

2



>> tt = linspace(0,500e-6 - Ts,N);
>> ff = linspace(-(N/2)*deltaf,((N/2)-1)*deltaf,N);

Don’t forget to do

>> G = fftshift(G);

so the spectrum matches the values on the axis.

1. A discrete time “unit impulse” is defined by the time signal

δ[n] =

 1 n = 0

0 otherwise

Let the time signal be a unit impulse. (Remember thatN = 512.) Compute and plot the spectrum.
Verify that your spectrum is correct by evaluating equation (1) by hand. MATLAB Hint: If you type:

set(gcf, ’PaperPosition’, [0.5, 0.5, 7.5,1 0])

before printing, your plots will be better spaced on the page.

2. Let the time signal beg[n] = g(nTs) = 1. Compute and plot the spectrum. Verify that your spectrum
is correct by substituting the spectrum you obtain into equation (2) and showing by hand that you
obtaing(nTs) back again.

3. Let the time signal be a single pulse extending fromt = −16Ts to t = 16Ts. (Remember, the
time signal is interpreted as periodic!). Compute and plot the spectrum. Verify that it is correct by
comparing with the conventional Fourier transform of a continuous-time pulse.

4. Let the time signal be the pulse of Step 3 above, but extending fromt = −32Ts to t = 32Ts. Compare
its spectrum with the spectrum obtained in Step 3.

5. Let the time signal be a cosine of amplitude one whose frequency is chosen so that it has exactly 32
cycles in500µs. Compute and plot the spectrum. Now verify your result by substituting the spectrum
you obtain into equation (2) and showing that you recover the original cosine. (This is much easier
than substituting a cosine into equation (1) to verify the spectrum.)

6. Let the time signal be a cosine of amplitude one whose frequency is 65 kHz. Compute and plot the
spectrum. Compare the result with the spectrum you obtained in Step 5 above.

7. Let the time signal be an “RF pulse” of frequency 64 kHz and duration64Ts.

Instructor Verification (separate page)

5 Report

Include the required spectra from Steps 1 through 7. Verify the correctness of your results as requested.
Your report need not contain very much writing, but be sure that what you do write is correct, supports or
explains the graphical data, and uses good English. Only one per group needs to do the report.

McClellan, Schafer, and Yoder,Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458.c©2003 Pearson Education, Inc.

3



Lab 19
INSTRUCTOR VERIFICATION SHEET

For each verification, be prepared to explain your answer and respond to other related questions
that the lab TA’s or professors might ask. Turn this page in at the end of your lab period.

Name: Date of Lab:

Signals 1-7

Verified: Date/Time:

McClellan, Schafer, and Yoder,Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458.c©2003 Pearson Education, Inc.

4


	Lab2.pdf
	lab19.pdf

