
Introduction to Matlab
importing data, down-sampling, filtering, plotting signals

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

What is matlab?
"MATLAB® is a high-level language and interactive environment for numerical

computation, visualization, and programming" www.mathworks.com

● uses ‘English-like’ statements

○ as opposed to 0’s and 1’s

● specialized for scientific and technical computing

○ began as a tool for matrix manipulation

○ other tools such as C++ and Python are more general purpose

○ takes care of common processes for you (e.g. memory allocation)

● commercial software although Universities often purchase licenses

What does it look like?

What does it look like?

How does one best learn Matlab?
● Not watch someone talk about it…

● Treat Matlab like a foreign language

○ Be patient and learn basic structure by finding things that interest you

● Use common problem solving skills

○ Pick a problem that you are invested in

○ Break to problem into solvable parts in common language (commenting)

○ Use the functions help page [edit mean], or google to find functions for each step

○ Once the code works as intended, try to optimize the bottlenecks

○ Edit and re-edit the code to improve its readability and flexibility

When to use matlab?
Program Development Cycle

● Analyze: define the problem

● Design: plan the solution

● Choose the interface (maybe Matlab isn’t the best solution)

● Code: translate the algorithm into a programming language

● Debug and Test: find errors and improve efficiency

● Complete the documentation: describe the program

Fibonacci Numbers
A man put a pair of rabbits in a place surrounded on all sides by a wall. How many

pairs of rabbits can be produced from that pair in a year if it is supposed that every

month each pair begets a new pair which from the second month on becomes

productive?

f

n

 = f

n

 - 1

+

f

n

 - 2

Fibonacci Numbers

function f = fibonacci(n)
% FIBONACCI Fibonacci sequence
% f = FIBONACCI(n) generates the first n Fibonacci numbers.

f = zeros(n,1);
f(1) = 1;
f(2) = 2;
for k = 3 : n

f(k) = f(k-1) + f(k-2);
end

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

Good coding practices...
Sommerville has identified four generalised attributes which are not concerned with

what a program does, but how well the program does it:

● Maintainability.

● Dependability.

● Efficiency.

● Usability.

https://en.wikipedia.org/wiki/Best_coding_practices

Good coding practices...
From Meek & Heath: "What happens before one gets to the coding stage is often of

crucial importance to the success of the project."[8]

● how is development structured? (life cycle)

● what is the software meant to do? (requirements)

● the overall structure of the software system (architecture)

● more detailed design of individual components (design)

● choice of programming language(s)

https://en.wikipedia.org/wiki/Best_coding_practices

Good coding practices...
Requirements…

“The first prerequisite you need to fulfill before beginning construction is a clear

statement of the problem the system is supposed to solve.”

https://en.wikipedia.org/wiki/Best_coding_practices

Good coding practices...
Architecture…

“there are two ways of constructing a software design: one way is to make it so simple

that there are obviously no deficiencies; the other way is to make it so complicated that

there are no obvious deficiencies. The first method is far more difficult.”

https://en.wikipedia.org/wiki/Best_coding_practices

Good coding practices

Good coding practices

Code smell

"smells are certain structures in the

code that indicate violation of

fundamental design principles and

negatively impact design quality".

Code smell
"smells are certain structures in the code that indicate violation of fundamental

design principles and negatively impact design quality".

function load_file(name_of_file)

try
load(name_of_file);

catch
display(‘something bad...

happened’)

end

function load_file(name_of_file)

if ~isa(name_of_file, ‘string’)
display(‘input not a string’)
return

end

if isa(name_of_file, ‘file’)
display(‘cannot find file’)
return

end

load(name_of_file);

Spaghetti code
“a pejorative phrase for source code that has a complex and tangled control structure”

for counter = 1 : 10

fprintf(‘%i’, counter);

end

% or even better

numbers_to_display = 1 : 10;
fprintf('%i ',
numbers_to_display);

Spaghetti code
“a pejorative phrase for source code that has a complex and tangled control structure”

counter = 0;

while true:

counter = counter + 1;

fprintf(‘%i’, counter);

if counter > 10
break

end
end

Technical Debt
"a concept in programming that reflects the extra development work that arises when

code that is easy to implement in the short run is used instead of applying the best

overall solution"

Technical Debt

% do stuff
[var1, var2] = pwelch(x,50,25,50,200);

"a concept in programming that reflects the extra development work that arises when

code that is easy to implement in the short run is used instead of applying the best

overall solution"

Technical Debt

window_length = 0.25 % time in seconds
sampling_rate = 200; % sampling rate of the data

delta_window = floor(sampling_rate * window_length);
delta_overlap = floor(delta_window / 2);

% calculate the fast fourier transform using the p-welch method
[delta_band, delta_range] = pwelch(...
 EEG.data’ ,... % data (transposed so channels are columns)
 delta_window ,... % window length
 delta_overlap ,... % overlap
 delta_window ,... % points in calculation (window length)
 sampling_rate); % sampling rate

"a concept in programming that reflects the extra development work that arises when

code that is easy to implement in the short run is used instead of applying the best

overall solution"

Technical Debt

time

how
well
the

code
works

good

coding

bad
coding

sooooo
tempting

technical
debt!

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

A guide to writing unmaintainable code
Secure a job for life by making your code only intelligible to you (and barely that)...

General Principle

Quidquid latine dictum sit, altum sonatur.

- Whatever is said in Latin sounds profound.

A guide to writing unmaintainable code
Variable Naming

"When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just

what I choose it to mean - neither more nor less."

- Lewis Carroll -- Through the Looking Glass, Chapter 6

A guide to writing unmaintainable code
Variable Naming

Single letter variables: i, j, p

Random names from a baby book: fred, susie, billy

Creative misspelling: data_meen, filtre_parametre, coluor_seting

Be abstract: dataFunction32, important_function_blue

Use underscores whenever possible: x_1, x1_, x1_b, x_1b, xb_1, x_1_b

A guide to writing unmaintainable code
Camouflage

"The longer it takes for a bug to surface, the harder it is to find.

- Roedy Green

A guide to writing unmaintainable code
Camouflage

channel_mean = max(data);

mary_poppins = (superman + …
batman) / rice_cooker;

timer_is_zero = 10;

important_variable = sqrt(nanmean(data));
clear important_variable

A guide to writing unmaintainable code
Documentation

Any fool can tell the truth, but it requires a man of some sense to know how to lie well.

- Samuel Butler (1835 - 1902)

Incorrect documentation is often worse than no documentation.

- Bertrand Meyer

"If you can't say anything nice, don't say anything at all".

- Thumper from Disney’s Bambi

A guide to writing unmaintainable code
Coding Obfuscation

Sedulously eschew obfuscatory hyperverbosity and prolixity.

- Roedy Green

A guide to writing unmaintainable code
Coding Obfuscation

some_data = rand(100, 1);
some_variable = 0;

for n = 1 : 100

if some_data(n) > some_variable

some_variable = some_data(n);
end

end

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

common matlab error messages...
>> A(1))

??? A(1))

Error: Unbalanced or misused parentheses or brackets.

>> A = [1,3];

>> A(3)

??? Index exceeds matrix dimensions

>> A(0)

??? Subscript indices must either be real positive integers or logicals.

>> A(1:2, 1:2) = [1,2,3,4];

??? Subscripted assignment dimension mismatch.

bug in your code? don’t panic...
Setting a “break point” in functions...

Then examine your workspace as if you were in the middle of that function...

code a little slow? no worries, use the “profiler”

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

How to filter in matlab...
Practical guide to matlab filtering

(http://ch.mathworks.com/help/signal/examples/practical-introduction-to-digital-filtering.html)

sampling_rate = 500; % sample rate in Hz
num_samples = 500; % number of signal samples
sample_data = ecg(num_samples)' + 0.25 * randn(num_samples, 1); % noisy waveform
time_range = (0 : num_samples - 1) / sampling_rate; % time vector

freq_normalized = 75 / (sampling_rate/2); % Normalized frequency
filter_design = designfilt('lowpassfir', 'FilterOrder', 70, ...

'CutoffFrequency',freq_normalized);

filtered_data_nl = filter(filter_design, sample_data); % non-linear phase filter
filtered_data_zp = filtfilt(filter_design, sample_data); % zero-phase implementation

How to filter in matlab...
figure
plot(time_range, sample_data);
hold on
plot(time_range, filtered_data_nl,...

'r', 'linewidth' ,1.5);
plot(time_range, filtered_data_zp,...

'g', 'linewidth' ,1.5);
title('Filtered Waveforms');
xlabel('Time (s)')
legend('Original Signal','Non-linear
phase IIR output',...
 'Zero-phase IIR output');
ax = axis;
axis([0.25 0.55 ax(3:4)])
grid on

filtering an ECG signal

0 1 2

Highpass

Filter > 20 Hz

0 1 2

Highpass

Filter > 10 Hz

filtering an ECG signal

0 1 2

Highpass

Filter > 5 Hz

filtering an ECG signal

0 1 2

Highpass

Filter > 2 Hz

filtering an ECG signal

0 1 2

Lowpass

Filter > 1 Hz

filtering an ECG signal

0 1 2

Lowpass

Filter > 5 Hz

filtering an ECG signal

0 1 2

Lowpass

Filter > 15 Hz

filtering an ECG signal

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

Matlab capabilities in plotting

load data

figure;
hold on;

hFit = line(xfit , yfit);
hE = errorbar(xdata_m, ydata_m,
ydata_s);

hData = line(xVdata, yVdata);
hModel = line(xmodel, ymodel);
hCI(1) = line(xmodel, ymodelL);
hCI(2) = line(xmodel, ymodelU);

http://blogs.mathworks.com/loren/2007/12/11/making-pretty-graphs/

Matlab capabilities in plotting

Matlab capabilities in plotting

3D surface plots with
lighting effects...

colourful line plots
using distinct markers

mixed plots with
streamlines, contours

and objects

Getting started
Always try to pre-specify plotting components… don’t be surprised by results

% alternatively (but worse)...
% plot some data
plot(rand(100, 1));

% get the handles from the figure
handles.figure = gcf;
handles.axes = gca;
handles.line = gco;

% set some properties
set(handles.figure, ...

'color', 'w', ...
'units', 'normalized', ...
'position', [0.25, 0.25, 0.5, 0.5]);

% open a figure window
handles.figure = figure(...

'color', 'w', ...
'units', 'normalized', ...
'position', [0.25, 0.25, 0.5, 0.5]);

% open an axes window
handles.axes = axes(...

'parent', handles.figure, ...
'nextplot', 'add', ...
'xlim', [0, 100], ...
'ytick', []);

% plot some data
handles.line = plot(rand(100, 1));

Getting started
See the properties with get on the handles or google the plot functions

% open a figure window
get(handles.figure)

Alphamap: [1x64 double]
 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: [0x0 GraphicsPlaceholder]
 Clipping: 'on'
 CloseRequestFcn: 'closereq'
 Color: [1 1 1]
 Colormap: [64x3 double]
 CreateFcn: ''
 CurrentCharacter: ''
 CurrentPoint: [-0.0017857 -0.002381]
 DeleteFcn: ''

…
DockControls: 'on'

 FileName: ''
 GraphicsSmoothing: 'on'
 HandleVisibility: 'on'
 IntegerHandle: 'on'
 Interruptible: 'on'
 InvertHardcopy: 'on'
 KeyPressFcn: ''
 KeyReleaseFcn: ''

MenuBar: 'figure'
…

set(handles.figure, ‘color’, [0, 0, 0]);

1. The idea of matlab
2. Good coding practices
3. A guide to writing unmaintainable code
4. Bugs and profiling
5. Filtering and its effects
6. Making beautiful plots
7. Graphical user interfaces

Getting started
GUIs are “little more” than figures with buttons and “callbacks”

handles.figure = figure(...
'color', 'w');

handles.button = uicontrol(...
'Parent', handles.figure,...
'Style', 'pushbutton',...
'String', 'plot',...
'Units', 'normalized',...
'Position', [0.4 0.4 0.2 0.2], ...
'Callback', 'plot(rand(100, 1))');

